Bor Atıklarından Üretilen Silika Aerojelin Çevre Dostu Tuğlaların Basınç Dayanımına ve Isıl Performansına Etkileri

Bu çalışmada, bor atıklarından üretilen silika aerojelin tuğlanın basınç dayanımı ve ısıl performansına etkisinin incelenmesi amaçlanmıştır. Çalışma üç aşamada gerçekleştirilmiştir. İlk aşamada Türkiye/Eskişehir/Kırka bölgesinden temin edilen bor atığı kullanılarak silika aerojel üretimi yapılmıştır. İkinci aşamada, üretilen silika aerojel hacimce farklı oranlarda (%0 (REF), %15 (AB1), %25 (AB2), %35 (AB3), %45 (AB4)) tuğla bünyesine ikame edilmiş, 900 oC ve 1000 oC pişirilerek katkılı tuğla numuneleri üretilmiştir. Üçüncü ve son aşamada ise, üretilen numunelere basınç dayanımı ve ısı iletim katsayısı tayini deneyleri uygulanmıştır. Ayrıca numunelerin içyapısının incelenmesi amacıyla SEM görüntüleri alınmıştır. Sonuç olarak; her iki sıcaklıkta da aerojel miktarının artması ile basınç dayanımı ve ısı iletim katsayısı değerinde azalma meydana gelmiştir. SEM görüntülerinde silika aerojel miktarının artmasıyla amorf yapının artığı ve yer yer boşluklar ve çatlaklar oluştuğu görülmüştür. Ayrıca basınç dayanımı baz alındığında; üretilen numunelerden AB1 numunesi taşıyıcı olarak kullanılabileceği, AB2, AB3 ve AB4 numunelerinin ise kaplama veya geleneksel yapılarda duvar dolgu malzemesi olarak kullanılabileceği tespit edilmiştir. Bor atığı gibi silis içeren atıkların aerojel üretiminde kullanılmaları atıkların bertaraf edilmesi için uygun bir çözüm yolu olacağı düşünülmektedir.
Anahtar Kelimeler:

Bor atığı, Aerojel, Tuğla

Effects Of Silica Aerogel Produced From Boron Wastes To Compressive Strength And Thermal Performance Of Environmentally Friendly Bricks

In this study, the aim is to inspect the effects of silica aerogel produced from boron waster to compressive strength and thermal performance of bricks. Firstly, silica aerogel was produced by using boron waste obtained from Turkey/Eskişehir/Kırka region. After, silica aerogel produced was mixed into the brick in different proportions, and was baked in 900 °C and 1000 °C to create mixed brick samples. Finally, samples produced was experimented with compressive strength and thermal conductivity coefficient and SEM images were taken. As a result, the increase of aerogel amount caused decrease in compressive strength and thermal conductivity coefficient values in both temperatures. It was observed that amorphous structure increased with the increase of silica aerogel and partial holes and cracks emerged in SEM images. Additionally, when compressive strength was used as basis, it was determined that AB1 sample could be used as holder, while AB2, AB3 and AB4 samples could be used as coating or back filling material in traditional structures. Use of wastes which contain silica such as boron waste in aerogel production is thought to be an appropriate solution for waste disposal.

___

  • [1] Becker PFB, Effting C, Schackow A. Lightweight thermal insulating coating mortars with aerogel, EPS, and vermiculite for energy conservation in buildings. Cem. Conc. Comp. 2022; 125(2022): 104283.
  • [2] Calisesi M. Aerogel Incorporated Plasters and Mortars, The Case Study of Precast Panels; Degree Course: Build. Eng. and Arch.; University of Bologna: Bologna, Italy, 2017.
  • [3] Stephan A, Athanassi A. Towards a more circular construction sector: Estimating and spatialising current and future non-structural material replacement flows to maintain urban building stocks. Res., Conser. & Recy., 2018; 119: 248–262.
  • [4] Cao VD, Pilehvar S, Salas-Bringas C, Szczotok AM, Rodriguez JF, Carmona M, Al-Manasir N, Kjoniksen AL. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Ener. Conv. and Man. 2017; 133: 56e66.
  • [5] Lu Y, Liu Z, Li X, Yin XJ, Utomo HD. Development of water-based thermal insulation paints using silica aerogel made from incineration bottom ash. Energy & Build. 2022; 259, (2022): 111866.
  • [6] Buratti C, Moretti E, Belloni E, Agosti F. Development of Innovative Aerogel Based Plasters: Preliminary Thermal and Acoustic Performance Evaluation. Sustainability; 2014(6): 5839-5852.
  • [7] Berardi U, Akos L. Thermal bridges of metal fasteners for aerogel-enhanced blankets. Ener. & Build. 2019; 185 (2019): 307-315.
  • [8] Elshazli MT, Mudaqiq M, Xing T, Ibrahim A, Engin BJS, Yuand J. Experimental study of using Aerogel insulation for residential buildings. Adv. in Build. Ener. Res. 2022; 16(5): 569-588.
  • [9] Ganobjaka M, Brunner S, Wernery J. Aerogel materials for heritage buildings: Materials, properties and case studies. J. Cult. Her. 2020; 42(2020): 81–98.
  • [10] Lucchi E, Becherini F, Tuccio, MCD, Troi A, Frick J, Roberti F, Hermann C, Fairnington I, Mezzasalma G, Pockele L, Bernardi, A. Thermal performance evaluation and comfort assessment of advanced aerogel as blown-in insulation for historic buildings. Build. Env. 2017; 122 (2017): 258-268.
  • [11] Aste N, Leonforte F, Manfren M, Mazzon M. Thermal inertia and energy efficiency - parametric simulation assessment on a calibrated case study, App. Ener. 2015; 145 (2015): 111–123.
  • [12] Walker R, Pavia S. Thermal Performance of a selection of insulation materials suitable for historic buildings. Build. Env. 2015; 94(2015): 155e165.
  • [13] Fernando S, Gunasekara C, Law DW, Nasvic MCM, Setunge S, Dissanayake R. Engineering properties of waste-based alkali activated concrete brick containing low calcium fly ash and rice husk ash: A comparison with traditional Portland cement concrete brick. J. Build. Eng. 2022; 46 (2022): 103810.
  • [14] Mahdi SN, Dushyanth V, Babu R, Hossiney N, Abdullah MMAB. Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash. Case Stud. Const. Mat. 2022; 16(2022): e00800.
  • [15] Soharu A, Naveen BP, Sil A. Fly ash bricks development using concrete waste debris and self-healing bacteria. J. Mat. Cyc. Waste Manag. 2022, 35(2022): 1-12.
  • [16] Debnatha, NK, Boga S, Singha A, Majhi MR, Singh VK. Fabrication of low to high duty fireclay refractory bricks from lignite fly ash. Ceram. Int. Avai. 2022, 48(9): 12152-12160.
  • [17] Suganya STD, Krishnaraj L, Nakkeeran G. Evaluation of failure mode analysis and strength behavior of fly ash brick masonry prisms, Sust. Const. Mat. 2022; 107–121.
  • [18] Araf T, Islam MS, Shipon MFA. Suitability of waste slag as partial replacement of fine aggregate in making sustainable brick. Prooceding of 3rd International conference on Research and Innovation in Civil Engineering, Prague. (2022). ISBN: 978-984—35-1935-1.
  • [19] Abu-Jdayil B, Mourad AH, Hittini W, Hassan M, Hameedi S. Traditional, state of the art and renewable thermal building insulation materials: An overview. Const. and Build. Mat., 2019; 214: 709–735.
  • [20] Fricke J. Tillotson, T. Aerogels: Production, characterization, and applications. Thin Sol. Films. 1997; 297(1–2): 212–223.
  • [21] Mahadik DB, Lee YK, Chavan NK, Mahadik SA, Park HH. Monolithic and shrinkage free hydrophobic silica aerogels via new rapid supercritical extraction process. J. Sup. Fluids, 2016; 107: 84–91.
  • [22] Joo P, Yao Y, Teo N, Jana SC. Modular aerogel brick fabrication via 3D-printed molds. Additive Manufacturing, 2021; 46(2021): 102059.
  • [23] Baetens R, Jelle BP, Gustavsen A. Aerogel insulation for building applications: a state-of-the-art review. Ene. Build.. 2011; 43(4): 761e769.
  • [24] Jelle BP. Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. In Ener. Build., 2011; 43 (10): 2549-2563.
  • [25] Berardi U. Aerogel-enhanced systems for building energy retrofits: Insights from a case study, Ene. Build. 2018; 159(2018): 370-381.
  • [26] Ibrahim M, Biwole PH, Wurtz E, Achard, P. A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating. Building Environment, 2014; 81 (2014): 112-122.
  • [27] Riffat SB, Qiu G. A review of state-of-the-art aerogel applications in buildings. Int. J. of Low -Carbon Tech., 2013; 8 (2013): 1–6.
  • [28] Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon-Fabry S, Achard P, Chainet, E. Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: electrochemical characterization. J. of Pow. Sour., 2007; 166(2007): 104–111.
  • [29] Rotter H, Landau MV, Carrera M, Goldfarb D, Herskowitz M. High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. App. Catal. B: Envir. 2004; 47 (2004): 111–126 (4).
  • [30] Kim SJ, Chase G, Jana SC. Polymer aerogels for efficient removal of airborne nanoparticles. Sep. Purif. Tech. 2015; 156 (2015): 803–808.
  • [31] Kim SJ, Chase G, Jana SC. The role of mesopores in achieving high efficiency airborne nanoparticle filtration using aerogel monoliths. Separation and Purification Technology, 2016: 166 (2016); 48–54.
  • [32] Kim SJ, Raut P, Chase G, Jana SC. Electrostatically active polymer hybrid aerogels for airborne nanoparticle filtration, ACS App. Mat. & Inter.. 2017; 9 (2017): 6401–6410.
  • [33] Zhai C, Jana SC. Tuning porous networks in polyimide aerogels for airborne nanoparticle filtration, ACS App. Mat. & Inter. 2017; 9 (2017): 30074–30082.
  • [34] García-Gonzalez CA, Alnaief M, Smirnova I. Polysaccharide-based aerogelspromising biodegradable carriers for drug delivery systems. Carboh. Poly. 2011; 86 (2011): 1425–1438.
  • [35] Randall JP, Meador MAP, Jana SC. Tailoring mechanical properties of aerogels for aerospace applications. ACS App. Mat. & Inter. 2011; 3(2011): 613–626.
  • [36] Stahl T, Wakili KG, Heiduk E. Stability Relevant Properties of an SiO2 Aerogel-Based Rendering and Its Application on Buildings. Sustain. 2021; 13: 10035.
  • [37] Stojanovic A, Zhao S, Angelica E, Malfait WJ, Koebel MM. Three routes to superinsulating silica aerogel powder. J. Sol-Gel Sci. and Tech. 2021; 90, 57–66.
  • [38] Ng S, Jelle BP, Stӕhli T. Calcined clays as binder for thermal insulating and structural aerogel incorporated mortar. Cem. Conc. Comp. 2016; 72(2016): 213–221.
  • [39] Curto DD, Cinieri V. Aerogel-Based plasters and energy efficiency of historic buildings. Literature Review and Guidelines for Manufacturing Specimens Destined for Thermal Tests. Sustain. 2020; 12, 9457.
  • [40] Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation: an overview. J. Sol-Gel Sci. and Tech. 63(2012), 315e339.
  • [41] Gao T, Jelle BP, Gustavsen A, Jacobsen S. Aerogel - incorporated concrete: an experimental study. Const. and Build. Mat. 2014; 52(2014): 130–136.
  • [42] Westgate P. Paine K, Ball RJ. Physical and mechanical properties of plasters incorporating aerogel granules and polypropylene monofilament fibres. Const. and Build. Mat., 2018; 158(2018): 472–480.
  • [43] Peter AEK, Balasubramanian M, Jayakumar AA, Mukilan P, Aishwarya S. A Partial Replacement of Cement Using Extract Powder Form of Silica Aerogel. Sustain. Const. Mat. 2022; Conference paper, 61–73.
  • [44] Shah SN, Mo KH, Yap SP, Radwan MKH. Effect of micro-sized silica aerogel on the properties of lightweight cement composite. Const. and Build. Mat., 2021; 290 (2021), 123229.
  • [45] Rostami J, Khandel O, Sedighardekani R, Sahneh AR, Ghahari SA. Enhanced workability, durability, and thermal properties of cement based composites with aerogel and paraffin coated recycled aggregates. J. Clean. Prod. 2021; 297 (2021), 126518.
  • [46] Karim AN, Pär J, Angela SK. Knowledge gaps regarding the hygrothermal and long-term performance of aerogel-based coating mortars, Const. Build. Mat. 2022; 314, Part A, 125602: 1-19.
  • [47] Maia J, Pedroso M, Ramos NMM, Pereira PF, Flores-Colen I, Glória Gomes M, Silva L. Hygrothermal Performance Of A New Thermal Aerogel-Based Render Under Distinct Climatic Conditions. Ener. & Build. 2021; 243(2021), 111001; 1-18.
  • [48] Karim AN. Aerogel-Based Plasters For Renovation Of Buildings İn Sweden. Thesıs For The Degree Of Lıcentıate Of Engıneerıng, Chalmers Teknoloji Üniversitesi, Gothenburg, Sweden. 2021.
  • [49] Sebdani ZM, Stefan HB, Kirill S, Wim H, Malfait J. A Review On Silica Aerogel-Based Materials For Acoustic Applications. Journal of Non-Crystalline Solids. 2021; 562 (2021) 120770: 1-15.
  • [50] Berardi U. Aerogel-enhanced systems for building energy retrofits: insights from a case study. Ener. and Build.. 2018; 159, (2018): 370-381.
  • [51] Fantucci S, Fenoglio E, Grosso G, Serra V, Perino M, Marino V, Dutto M. Development of an aerogel-based thermal coating for the energy retrofit and the prevention of condensation risk in existing buildings. Sci. and Tech. for the Built Env. 2019; 25 (9): 1178–1186.
  • [52] Ng, S., Jelle BP, Sandberg LIC, Gao T, Wallevik OH. Experimental investigations of aerogel-incorporated ultra-high performance concrete. Const. and Build. Mat.. 2015; 77 (2015): 307–316.
  • [53] Welsch T, Held MS, Milow B. High performance aerogel concrete. Proc. 12th Conference on Advanced Building Skins, Bern 2017, 591-9.
  • [54] Tsioulou Q, Ayegbusi J, Lampropoulos A. Experimental investigation on thermal conductivity and mechanical properties of a novel Aerogel concrete. High Tech Concrete: Where Technology and Engineering Meet, 2017: 125-131.
  • [55] Welsch T, Held MS, Milow B. High performance aerogel concrete. Proc. 12th Conference on Advanced Building Skins, Bern 2017, 591-599.
  • [56] Wang L, Liu P, Jing Q, Liu Y, Wanga W, Zhanga Y, Li Z. Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel. Const. and Build. Mat. 2018; 188(2018): 447-457.
  • [57] Adhikarya SK., Rudžionis Z, Tučkutė S. Characterization of novel lightweight self-compacting cement composites with incorporated expanded glass, aerogel, zeolite and fly ash. Case Stud. in Const. Mat. 2022; 16(2022), e00879:1-11.
  • [58] Çağlar H, Çağlar A Research of Physical and Mechanical Properties of Blended Bricks with Fly Ash Based, Blast Furnace Slag Addition. Int. J. Res. –Granth.. 2019; 7(1): 126-136.
  • [59] Çağlar A, Korkmaz SZ, Demirel B, Çağlar H. Use Of Boron Wastes As An Additive in Blend Bricks. Research & Reviews In Architecture, Plannıng And Design Gece Kitaplığı, 5-14, 2019.
  • [60] Kumar A, Kumar R, Das V, Jhatial AA, Ali TH. Assessing the structural efficiency and durability of burnt clay bricks incorporating fly ash and silica fume as additives. Const. and Build. Mat. 2021; 310(2021), 125233: 1-17.
  • [61] TS EN 772-1, (2012). Masonry units - Test methods - Part 1: Determination of compressive strength, Turkish Standards, Ankara.
  • [62] Bahari A, Sadeghi-Nik A, Shaikh FUA, Sadeghi-Nik A, Prada EC, Mirshafiei E, Roodbar M. Experimental studies on rheological, mechanical, and microstructure properties of self-compacting concrete containing perovskite nanomaterial”, Struct. Conc. (2021A) suco.202000548.
  • [63] Bahari A, Sadeghi-Nik A, Cerro-Prada E, Roodbari M, Zhuge Y. One-step random-walk process of nanoparticles in cement-based materials”, J. of Cent. South Uni. 2021B; 28 (6) (2021B): 1679–1691.
  • [64] Adhikary SK, Rudžionis Z, Tučkutė Z, Ashish DK. Efects of carbon nanotubes on expanded glass and silica aerogel based lightweight concrete. Sci. Rep.. 2021; 11(2104): 1-11.
  • [65] Adhikary SK, Rudžionis Z, Vaičiukynienė D. Development of flowable ultra - lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. J. Build. Eng. 2020; 31, 101399: 1-20.
  • [66] Shah SN, Mo KH, Yap SP, Radwan MKH. Effect of micro-sized silica aerogel on the properties of lightweight cement composite. Construction and Building Materials. 2021; 290(2021), 123229, 1-15.
  • [67] Jia G, Li Z, Liu P, Jing Q. Applications of aerogel in cement-based thermal insulation materials: an overview. Mag. of Conc. Res. 2018; 70(16): 822-837.
  • [68] Li P, Wu H, Liu Y, Yang J, Fang Z, Lin B. Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Const. and Build. Mat. 2019; 205(2019): 529-542.
  • [69] Zhang H, Yang J, Wu H, Fu P, Liu Y, Yang W. Dynamic thermal performance of ultra-light and thermal-insulative aerogelfoamed concrete for building energy efficiency. Solar Ener. 2020; 204(2020), 569-576.
  • [70] Kim S, Seo J, Cha J, Kim S. Chemical retreating for gel - typed aerogel and insulation performance of cement containing aerogel. Const. and Build. Mat. 2013, 40 (2013), 501 505.
  • [71] Shafi S, Tian J, Navik R, Gai Y, Ding X, Zhao Y. Fume silica improves the insulating and mechanical performance of silica aerogel/glass fiber composite. J. of Sup. Fluids, 2019; 148: 9–15.
  • [72] Júlio MF, Soares A, Ilharco LM, Colen IF, Brito J. Aerogel-based renders with lightweight aggregates: Correlation betweenmolecular/pore structure and performance. Const. and Build. Mat. 2016; 124(2016): 485-495.
  • [73] Bostancı L, Sola ÖÇ. Mechanical Properties and Thermal Conductivity of Aerogel-Incorporated Alkali-Activated Slag Mortars. Adv. in Civ. Eng. 2018; Article ID 4156248: 1-9.
  • [74] Zhu P, Brunner S, Zhao S, Griffa M, Leemann A, Toropovs N, Malekos A, Koebel MM, Lura, P. Study of physical properties and microstructure of aerogel-cement mortars for improving the fire safety of high-performance concrete linings in tunnels. Cem. and Conc. Comp. 2019; (104), 103414: 1-14.
  • [75] Zhang H, Yang J, Wu H, Fu P, Liu Y, Yang W. Dynamic thermal performance of ultra-light and thermal-insulative aerogelfoamed concrete for building energy efficiency. Solar Ene.. 2020; 204(2020): 569-576.
  • [76] Lu X, Wang P, Buttner D, Heinemann U, Nilsson O, Kuhn J, Fricke J. Thermal transport in opacified monolithic silica aerogels, High Temp.-High Pres. 1991, 23 (4), 431-436.
  • [77] Alyne Lamy-Mendes A, Pontinha ADR, Alves P, Santos P, Durães L. Progress in silica aerogel-containing materials for buildings thermal insulation”, Construction and Building Materials. 2021; 286(2021), 122815: 1-13.
  • [78] Aldakshe A., Çağlar H, Çağlar A, Avan A. The Investigation of Use as Aggregate in Lightweight Concrete Production of Boron Wastes, Civil Engineering Journal, 2020; 6(7): 1328-1335.
  • [79] Çimen S, Çağlar H, Çağlar A, Can Ö. Effect of Boron Wastes on the Engineering Properties of Perlite Based Brick. Turkish J. of Nat. Sci. 2020; 9(2): 50-56.
  • [80] Çağlar H, Çağlar A, Korkmaz SZ, Demirel B, Bayraktar O.Y. Comparison Of The Physical And Mechanical Properties Of Manually Manufactured And Factory Production Blended Bricks Used In Build Of Traditional Kastamonu Houses. Fırat Univ. J. Eng. Sci. 2018; 30(2), 39-48.
  • [81] Çağlar H. Investigation of the Effect of Fly Ash and Boron Waste Additive on Brick Structure Material. Turkish Journal of Nature and Science; 2021; 10(1): 137-143.
  • [82] Massoudinejad M, Hashempour Y, Mohammadi H. Evaluation of Carbon Aerogel Manufacturing Process in Order to Desalination of Saline and Brackish Water in Laboratory Scale, Civil Engineering Journal. 2018; 4(1): 212-220.
  • [83] Kwan I, Mapstone J. Visibility aids for pedestrians and cyclists: a systematic review of randomised controlled trials. Accid Anal Prev. 2004;36(3):305-12.
  • [84] Carlson BM. Human embryology and developmental biology. 4th ed. St. Louis: Mosby; 2009.
  • [85] Nørvåg K. Space-efficient support for temporal text indexing in a document archive context. 7th European Conference, ECDL 2003. Berlin: Springer; 2003. p. 511-22.
  • [86] Hasund IK. The discourse markers like in English and liksom in Norwegian teenage language : A corpus-based, cross-linguistic study [dissertation]. Bergen: University of Bergen; 2003.
  • [87] Kapperud G. Utbruddsveil [Internet]. I Folkehelseins; 2016 [cited 2016 Jun 30]. Available from: https://www.fhi.no/nettpub/utbruddsveilederen/