Değişken Sinterleme Protokollerinin Zirkonyanın Optik ve Mekanik Özellikleri Üzerindeki Etkisi

 Son yıllarda yaygınlaşan bilgisayar destekli tasarım ve bilgisayar destekli üretim (CAD/CAM) sistemleri ve tek randevulu hasta başı tedaviler ile hem hekimlerin hemde hastaların estetik beklentisi artmıştır. Daha estetik ve daha dayanıklı restorasyonlar üretmek için zirkonyanın optik ve mekanik özelliklerinin iyileştirilmesiyle birlikteüretim aşamalarını kısaltacak, hızlandırılmış sinterleme protokolleri geliştirilmiştir. Kullanıma sunulan yeni sinterleme protokollerinin amacı zaman tasarrufu sağlamanın yanı sırazirkonyanın optik ve mekanik özelliklerini de geliştirmektir, ancak sinterleme hızı ve sıcaklığının değişmesi zirkonyanın fiziksel özellikleri üzerinde değişken etkiler oluşturduğundanzirkonya restorasyonların klinik başarısını doğrudan etkiler. Bu derlemede, sinterleme parametrelerindeki değişikliklerin zirkonyanın mikro yapısı ile optik ve mekanik özellikleriüzerindeki etkileri hakkında bilgi verilmiştir

The Effect of Altering Sintering Conditions on the Optical and Mechanical Properties of Zirconia

The aesthetic expectations of both physicians and patients have increased with computer aided design and computer aided manufacturing (CAD/CAM) systems and single appointment chair-side treatments that have become widespread in recent years. In order to produce more aesthetic and more durable restorations, accelerated sintering protocols have been developed that will shorten the production stages with the improvement of the optical and mechanical properties of zirconia. The aim of the new sintering protocols introduced is not only to save time but also to improve the optical and mechanical properties of zirconia; however, changes in sintering speed and temperature directly affect the clinical success of zirconia restorations as they have variable effects on the physical properties of zirconia. In this review, information is given about the effects of changes in sintering parameters on the microstructure and optical and mechanical properties of zirconia.

___

  • 1. Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent. 2012;40(2):154-162.
  • 2. Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: Basic properties and clinical applications. J Dent. 2007;35(11):819-826.
  • 3. Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NRFA. All-ceramic systems: Laboratory and clinical performance. Dent Clin North Am. 2011;55(2):333-352.
  • 4. Conrad HJ, Seong WJ, Pesun IJ. Clinical Implications Current ceramic materials and systems with clinical recommendations: A systematic review. J Prosthet Dent. 2007;98(5):389-404.
  • 5. Raigrodski AJ, Hillstead MB, Meng GK, Chung KH. Survival and complications of zirconiabased fixed dental prostheses: A systematic review. J Prosthet Dent. 2012;107(3):170-177.
  • 6. Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs) A systematic review of the survival and complication rates. Part I: Single crowns (SCs). In: Dental Materials. Vol 31. Elsevier Inc.; 2015:603-623.
  • 7. Larsson C, Wennerberg A. The Clinical Success of Zirconia-Based Crowns: A Systematic Review. Int J Prosthodont. 2014;27(1):33-43.
  • 8. Ahmed WM, Troczynski T, McCullagh AP, Wyatt CCL, Carvalho RM. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J Esthetic and Restorative Dentistry. 2019;31(5):423-430.
  • 9. Michailova M, Elsayed A, Fabel G, Edelhoff D, Zylla IM, Stawarczyk B. Comparison between novel strength-gradient and color-gradient multilayered zirconia using conventional and high-speed sintering. J Mech Behav Biomed Mater. 2020;111(103977):1-8.
  • 10. Schönhoff LM, Lümkemann N, Buser R, Hampe R, Stawarczyk B. Fatigue resistance of monolithic strength-gradient zirconia materials. J Mech Behav Biomed Mater. 2021;119(104504):1-7.
  • 11. Karataş A. İkili Seramik Malzemelerin Birlikte Presleme-Sinterleme, Mikroyapı ve Mekanik Özelliklerinin Karakterizasyonu. Yüksek Lisans Tezi. Celal Bayar Üniversitesi; 2014.
  • 12. Jansen JU, Lümkemann N, Letz I, Pfefferle R, Sener B, Stawarczyk B. Impact of high-speed sintering on translucency, phase content, grain sizes, and flexural strength of 3Y-TZP and 4Y-TZP zirconia materials. J Prosthet Dent. 2019;122(4):396-403.
  • 13. Sulaiman TA, Abdulmajeed AA, Donovan TE, Vallittu PK, Närhi TO, Lassila L v. The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent Mater J. 2015;34(5):605-610.
  • 14. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dental Materials. 2008;24(3):299-307.
  • 15. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res. 2013;57(4):236- 261.
  • 16. Piconi C, Maccauro G. Zirconia as a Ceramic biomateryal. Biomaterials
  • 17. Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dental Materials. 2010;26(8):807-820.
  • 18. Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconiacontaining ceramics. J Am Ceramic Society. 2000;83(3):461-487.
  • 19. Turp V, Gültekin P. Zirkonyanın Yapısı. Turkiye Klinikleri Prosthodont-Special Topics. 2017;3(2):77-83.
  • 20. Pereira GKR, Venturini AB, Silvestri T, et al. Low-temperature degradation of Y-TZP ceramics: A systematic review and metaDoğay, Saraç 122 analysis. J Mech Behav Biomed Mater. 2016; 55:151-163.
  • 21. Hatanaka GR, Polli GS, Adabo GL. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J Prosthet Dent. 2020;123(2):330-337.
  • 22. Chevalier J, Gremillard L, Virkar A v., Clarke DR. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J Am Ceramic Society. 2009;92(9):1901-1920.
  • 23. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dental Materials. 2014;30(10):1195-1203.
  • 24. Muñoz EM, Longhini D, Antonio SG, Adabo GL. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dent. 2017; 63:94-102.
  • 25. Sulaiman TA, Abdulmajeed AA, Shahramian K, Lassila L. Effect of different treatments on the flexural strength of fully versus partially stabilized monolithic zirconia. J Prosthet Dent. 2017;118(2):216-220.
  • 26. Gracis S, Thompson V, Ferencz J, Silva N, Bonfante E. A New Classification System for All-Ceramic and Ceramic-like Restorative Materials. Int J Prosthodont. 2016;28(3):227-235.
  • 27. Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97(2):140-147.
  • 28. Zhang F, Inokoshi M, Batuk M, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dental Materials. 2016;32(12): e327-e337.
  • 29. Sun T, Zhou S, Lai R, et al. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater. 2014; 35:93-101.
  • 30. Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017;48(5):369-380.
  • 31. Camposilvan E, Leone R, Gremillard L, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dental Materials. 2018;34(6):879-890.
  • 32. Nakamura K, Harada A, Inagaki R, et al. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand. 2015;73(8):602-608.
  • 33. Denry I, Kelly JR. Emerging ceramicbased materials for dentistry. J Dent Res. 2014;93(12):1235-1242.
  • 34. Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials. 2004;25(24):5539-5545.
  • 35. Han J, Zhao J, Shen Z. Zirconia ceramics in metal-free implant dentistry. Advances in Applied Ceramics. 2017;116(3):138-150.
  • 36. Hjerppe J, Närhi T, Fröberg K, Vallittu PK, Lassila LVJ. Effect of shading the zirconia framework on biaxial strength and surface microhardness. Acta Odontol Scand. 2008;66(5):262-267.
  • 37. Suttor, D., Hauptmann, H., Schnagl, R., & Frank, S. (2004). U.S. Patent No. 6,709,694. Washington, DC: U.S. Patent and Trademark Office.
  • 38. Tabatabaian F. Color Aspect of Monolithic Zirconia Restorations: A Review of the Literature. J Prosthodont. 2019;28(3):276-287.
  • 39. Revilla-León, Marta, et al. “Manufacturing accuracy and volumetric changes of stereolithography additively manufactured zirconia with different porosities.” J Prosthet Dent 128.2 (2022): 211-215.
  • 40. Denkena B, Breidenstein B, Busemann S, Lehr CM. Impact of Hard Machining on Zirconia Based Ceramics for Dental Applications. In: Procedia CIRP. Vol 65. Elsevier B.V.; 2017:248-252.
  • 41. Stawarczyk B, Özcan M, Hallmann L, Ender Sinterleme Protokollerinin Zirkonya Özellikleri Üzerindeki Etkisi 123 A, Mehl A, Hämmerlet CHF. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig. 2013;17(1):269-274.
  • 42. Elisa Kauling A, Güth JF, Erdelt K, Edelhoff D, Keul C. Influence of speed sintering on the fit and fracture strength of 3-unit monolithicm zirconia fixed partial dentures. J Prosthet Dent. 2020;124(3):380-386.
  • 43. Wiedenmann F, Pfefferle R, Reichert A, Jerman E, Stawarczyk B. Impact of high-speed sintering, layer thickness and artificial aging on the fracture load and two-body wear of zirconia crowns. Dental Materials. 2020;36(7):846-853.
  • 44. Lawson NC, Maharishi A. Strength and translucency of zirconia after high-speed sintering. J Esthetic and Restorative Dentistry. 2020;32(2):219-225.
  • 45. Kaizer MR, Gierthmuehlen PC, dos Santos MB, Cava SS, Zhang Y. Speed sintering translucent zirconia for chairside one-visit dental restorations: Optical, mechanical, and wear characteristics. Ceram Int. 2017;43(14):10999-11005.
  • 46. Ersoy NM, Aydoğdu HM, Değirmenci BÜ, Çökük N, Sevimay M. The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta Biomater Odontol Scand. 2015;1(2-4):43-50.
  • 47. Cotič J, Jevnikar P, Kocjan A, Kosmač T. Complexity of the relationships between the sintering-temperature-dependent grain size, airborne-particle abrasion, ageing and strength of 3Y-TZP ceramics. Dental Materials. 2016;32(4):510-518.
  • 48. Hallmann L, Mehl A, Ulmer P, et al. The influence of grain size on low-temperature degradation of dental zirconia. J Biomed Mater Res B Appl Biomater. 2012;100 B(2):447-456.
  • 49. Abdelbary O, Wahsh M, Sherif A, Salah T. Effect of accelerated aging on translucency of monolithic zirconia. Future Dental Journal. 2016;2(2):65-69.
  • 50. Kim HK, Kim SH, Lee JB, Han JS, Yeo IS, Ha SR. Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. J Adv Prosthodont. 2016;8(1):37-42.
  • 51. Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J Adv Prosthodont. 2013;5(2):161-166.
  • 52. Zhang H, Li Z, Kim BN, et al. Effect of alumina dopant on transparency of tetragonal zirconia. J Nanomater. 2012;2012.
  • 53. Macan J, Brcković L, Gajović A. Influence of preparation method and alumina content on crystallization and morphology of porous yttria stabilized zirconia. J Eur Ceram Soc. 2017;37(9):3137-3149
  • 54. Yu Q, Zhou C, Zhang H, Zhao F. Thermal stability of nanostructured 13 wt% Al2O3-8 wt% Y2O3-ZrO2 thermal barrier coatings. J Eur Ceram Soc. 2010;30(4):889-897.
  • 55. Matsui K, Yoshida H, Ikuhara Y. Isothermal sintering effects on phase separation and grain growth in yttria-stabilized tetragonal zirconia polycrystal. J Am Ceramic Society. 2009;92(2):467-475.
  • 56. Ruiz L, Readey MJ. Effect of heat treatment on grain size, phase assemblage, and mechanical properties of 3 mol%Y-TZP. J Am Ceramic Society. 1996;79(9):2331-2340.
  • 57. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dental Materials. 2014;30(12): e419-e424.