Swarm Uydu Verileri Kullanılarak 06 Şubat 2023 Pazarcık Depreminden Önceki Öncül Manyetik Sinyallerin Tespiti ve Yorumlanmasına Ait İlksel Sonuçlar

06 Şubat 2023’de meydana gelen Mw=6.7, Mw=7.5 ve Mw=7.8 büyüklüğündeki depremler öncesi Litosfer-Astenosfer ve İyonosfer etkileşimi (LAIC) nedeniyle ölçülen manyetik anomalilerde sapmalar meydana gelmiştir. Bu sapmalar ana şokun hazırlık aşamasına ait önemli bilgileri içermektedir. Bu nedenle Dobrovolsky Dairesi içerisindeki Swarm uydularına ait 06 Ağustos 2022 ile 09 Şubat 2023 tarihleri arasındaki manyetik anomaliler dış kaynaklı manyetik etkileri (güneş rüzgarları, manyetik fırtınalar ve atmosferik elektrik akımları) kapsamayacak şekilde filtrelenmiştir. Bir sonraki aşamada verinin zamana göre 1’inci türevi alınmış ardından uzun dalga boylu trend veriden giderilmiştir. Filtrelenen verideki anomali bölgelerini belirlemek için kayan karelerinin ortalama karekökü (RMS) penceresi uygulanmıştır. Son olarak da kümülatif manyetik anomali değişim grafiği çizdirilmiştir. Bu grafik kapsamında depremden önce manyetik alanın X bileşeni için önemli bir anomali değişimi saptanamamış iken Y, Z ve F bileşenlerinde depremin hazırlık aşamasına ait kendisini tekrarlamayan anomaliler tespit edilmiştir.

Preliminary Results of Detection and Interpretation of Precursory Magnetic Signals Preceding February 06, 2023 Pazarcik Earthquake Using ESA Swarm Satellite Data

On February 06, 2023, there were three earthquakes with magnitudes of Mw=6.7, Mw=7.5, and Mw=7.8, which caused deviations in the magnetic anomalies measured due to Litosphere-Asthenosphere and Ionosphere Coupling (LAIC) prior to the earthquakes. These deviations contain important information related to the preparation phase of the main shock. Therefore, magnetic anomalies from Swarm satellites within the Dobrovolsky Circle between August 06, 2022, and February 09, 2023, were filtered out to exclude external magnetic effects (solar winds, magnetic storms, and atmospheric electric currents). In the next stage, the first derivative of the data was taken with respect to time and the long wavelength trend was removed from the data. The root-mean-square (RMS) window of moving squares was applied to identify anomaly regions in the filtered data. Finally, a cumulative magnetic anomaly change graph was plotted. According to this graph, a significant anomaly change was not detected in the X component of the magnetic field before the earthquake, while repeating anomalies related to the preparation phase of the earthquake were identified in the Y, Z, and F components.

___

  • Akhoondzadeh M., De Santis A., Marchetti D., Piscini A., Cianchini G., 2018. Multi precursors analysis associated with the powerful Ecuador (Mw= 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data, Advances in Space Research 61(1), 248–263, https://doi.org/10.1016/j.asr.2017.07.014
  • Arpat E., Şaroğlu F., 1972. Doğu anadolu fayi i̇le i̇lgi̇li̇ bazi gözlemler ve düşünceler, MTA Dergisi, 78, 44–50.
  • Barrie A.C., Cipriani F., Escoubet C.P., Toledo-Redondo S., Nakamura R., Torkar K., Sternovsky Z., Elkington S., Gershman D., Giles B., Schiff C., 2019. Characterizing spacecraft potential effects on measured particle trajectories, Physics of Plasmas, 26(10), https://doi.org/10.1063/1.5119344
  • Ben-Avraham Z., Garfunkel Z., Lazar M., 2008. Geology and evolution of the Southern Dead Sea fault with emphasis on subsurface structure, Annual Review of Earth and Planetary Sciences, 36, 357–387, https://doi.org/10.1146/annurev.earth.36.031207.124201
  • Dahle C., Arnold D., Bezdek A., Doornbos E., Ellmer M., Guo J., Dahle C., Zhang Y., Jäggi A., Klokocník J., Krauss S., Mao X., Mayer-Gürr T., Meyer U., Sebera J., Shum C.K., Zhang C., 2020. Description of the multi-approach gravity field models from Swarm GPS data, Earth System Science Data, 12(2), 1385–1417, https://doi.org/10.5194/essd-12-1385-2020
  • De Santis A., Marchetti D., Spogli L., Cianchini G., Javier Pavón-Carrasco F., De Franceschi G., Di Giovambattista R., Perrone L., Qamili E., Cesaroni C., Santis Anna De Ippolito A., Piscini A., Campuzano S.A., Sabbagh D., Amoruso L., Carbone M., Santoro F., Abbattista C., Drimaco D., 2019. Magnetic field and electron density data analysis from Swarm Satellites searching for ionospheric effects by great earthquakes: 12 case studies from 2014 to 2016, Atmosphere, 10(7), https://doi.org/10.3390/atmos10070371
  • Dobrovolsky I.P., Zubkov S.I., Miachkin V.I., 1979. Estimation of the size of earthquake preparation zones, Pure and Applied Geophysics, 117(5), 1025–1044, https://doi.org/10.1007/BF00876083
  • Duman T.Y., Emre O., 2013. The east anatolian fault: Geometry, segmentation and jog characteristics, Geological Society Special Publication, 372(1), 495–529, https://doi.org/10.1144/SP372.14
  • Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun Ş. ve Şaroğlu F., 2013. Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1:1.250.000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye. ISBN: 978-605-5310-56-1
  • Faccenna C., Bellier O., Martinod J., Piromallo C., Regard V., 2006. Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault, Earth and Planetary Science Letters, 242(1), 85–97, https://doi.org/10.1016/j.epsl.2005.11.046
  • Fitzmaurice A., Kuznetsova M., Shim J.S. and Uritsky V., 2017. Impact of solar activity on the ionosphere/thermosphere during geomagnetic quiet time for CTIPe and TIE-GCM. arXiv. 1701.06525.
  • Freund F., 2011. Pre-earthquake signals: Underlying physical processes, Journal of Asian Earth Sciences, 41(4), 383–400, https://doi.org/10.1016/J.JSEAES.2010.03.009
  • Friis-Christensen E., Lühr H., Knudsen D., Haagmans R., 2008. Swarm - An Earth Observation Mission investigating Geospace, Advances in Space Research, 41(1), 210–216, https://doi.org/10.1016/j.asr.2006.10.008
  • Garfunkel Z., 1981. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics, Tectonophysics, 80(1-4), 81–108, https://doi.org/10.1016/0040-1951(81)90143-8
  • Giannerini G., Campredon R., Feraud G., Abou Zakhem B., 1988. Deformations intraplaques et volcanisme associe; exemple de la bordure NW de la plaque Arabique au Cenozoique, Bulletin de la Société Géologique de France, 4(6), 937–947, https://doi.org/10.2113/gssgfbull.iv.6.937
  • Guvercin S.E., Karabulut H., Konca A.O., Dogan U., Ergintav S., 2022. Active seismotectonics of the East Anatolian Fault, Geophysical Journal International, 230(1), 50–69, https://doi.org/10.1093/gji/ggac045
  • Jackson J., McKenzie D., 1984. Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan, Geophysical Journal of the Royal Astronomical Society, 77(1), 185–264, https://doi.org/10.1111/j.1365-246X.1984.tb01931.x
  • Jin B., Chen S., Li M., Dong Q., Zhao L., 2022. Precise orbit determination and baseline consistency assessment for Swarm constellation, Advances in Space Research, 71(6), 2938–2953, https://doi.org/10.1016/j.asr.2022.11.045
  • Kocyigit A., Yilmaz A., Adamia S., Kuloshvili S., 2001. Neotectonics of east anatolian plateau (turkey) and lesser caucasus: Implication for transition from thrusting to strike-slip faulting, Geodinamica Acta, 14(1-3), 177–195, https://doi.org/10.1080/09853111.2001.11432443
  • Le Pichon X., Gaulier J.M., 1988. The rotation of Arabia and the Levant fault system, Tectonophysics, 153(1-4), 271–294, https://doi.org/10.1016/0040-1951(88)90020-0
  • Mahmouda Y., Masson F., Meghraoui M., Cakir Z., Alchalbi A., Yavasoglu H., Yonlu O., Daoud M., Ergintav S., Inan S., 2013. Kinematic study at the junction of the east anatolian fault and the dead sea fault from GPS measurements, Journal of Geodynamics, 67, 30–39, https://doi.org/10.1016/j.jog.2012.05.006
  • Marchetti D., De Santis A., D’Arcangelo S., Poggio F., Jin S., Piscini A., Campuzano S.A., 2020. Magnetic Field and Electron Density Anomalies from Swarm Satellites Preceding the Major Earthquakes of the 2016–2017 Amatrice-Norcia (Central Italy) Seismic Sequence, Pure and Applied Geophysics, 177(1), 305–319, https://doi.org/10.1007/s00024-019-02138-y
  • McKenzie D., 1972. Active Tectonics of the Mediterranean Region, Geophysical Journal of the Royal Astronomical Society, 30(2), 109–185, https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
  • Ozsoz I., Pamukcu O.A., 2021. Detection and interpretation of precursory magnetic signals preceding october 30, 2020 Samos earthquake, Turkish Journal of Earth Sciences, 30(S1), 748–757, https://doi.org/10.3906/YER-2107-9
  • Özsöz İ., 2022. Detection of Precursory Anomalies of 24 January 2020 Elazig-Sivrice Earthquake Mw=6.7, 74. Geological Congress of Turkey, 11-15 April 2022, Ankara-TURKEY, Erişim adresi: http://tjk.jmo.org.tr/index.php?kod=149
  • Pulinets S.A., Legen’ka A.D., Alekseev V.A., 1994. Pre-Earthquake Ionospheric Effects and their Possible Mechanisms, (In: Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory), Springer US, 545–557, https://doi.org/10.1007/978-1-4615-1829-7_46
  • Pulinets S.A., Ouzounov D.P., Karelin A.V., Davidenko D.V., 2015. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system, Geomagnetism and Aeronomy, 55(4), 521–538, https://doi.org/10.1134/S0016793215040131
  • Quennell A.M., 1958. The structural and geomorphic evolution of the dead sea rift, Quarterly Journal of the Geological Society of London, 114(1-4), 1–24, https://doi.org/10.1144/gsjgs.114.1.0001
  • Salamon A., Hofstetter A., Garfunkel Z., Ron H., 1996. Seismicity of the eastern Mediterranean region: Perspective from the Sinai subplate, Tectonophysics, 263(1-4), 293–305, https://doi.org/10.1016/S0040-1951(96)00030-3
  • Sengor A.M.C., Gorur N., Saroglu F., 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, Strike-slip deformation, basin formation, and sedimentation, 227–264, https://doi.org/10.2110/pec.85.37.0227
  • Sengor A.M.C., Yilmaz Y., 1981. Tethyan evolution of Turkey: A plate tectonic approach, Tectonophysics, 75(3-4), 181–241, https://doi.org/10.1016/0040-1951(81)90275-4
  • Sieg D., Diekmann F., 2016. Options for the further orbit evolution of the Swarm mission, European Space Agency (Special Publication), SP-740, 278.
  • Sorokin V.M., Chmyrev V.M., Yaschenko A.K., 2001. Electrodynamic model of the lower atmosphere and the ionosphere coupling, Journal of Atmospheric and Solar-Terrestrial Physics, 63(16), 1681–1691, https://doi.org/10.1016/s1364-6826(01)00047-5
  • U.S.G.S., 2023a. M7.8-Central Turkey, accessed February 08, 2023. U.S. Geological Survey Earthqueke Hazard Program. Erişim adresi:URL https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive
  • U.S.G.S., 2023b. M7.5-4 km SSE of Ekinözü, Turkey, accessed February 08, 2023, U.S. Geological Survey Earthquake Hazards Program, Erişim adresi: https://earthquake.usgs.gov/earthquakes/eventpage/us6000jlqa/executive
  • Westaway R., Arger J., 2001. Kinematics of the malatya–ovacik fault zone, Geodinamica Acta, 14(1-3), 103–131, https://doi.org/10.1080/09853111.2001.11432438