Kuzey Anadolu Fay Hattı Üzerinde Olası Deprem Senaryoları İçin Benzeştirilmiş Bir Kuvvetli Yer Hareketi Veri Tabanı

Depremler sırasında oluşan ve ivmeölçerler tarafından geçici ya da kalıcı istasyonlarda ölçülmekte olan kuvvetli yer hareketleri, temel olarak, kaydedilen depremin büyüklüğüne, kaynaktan istasyona olan mesafeye ve istasyonun bulunduğu (yerel) zemin özelliklerine bağlı olarak değişirler. Bu ivme-zaman kayıtları, yer bilimlerinden deprem mühendisliğine uzanan farklı disiplinlerde kullanılmakta olan girdi parametreleridir. Dünyada ve ülkemizde bulunan kuvvetli yer hareketi ağları sürekli olarak genişlemekte; bu sayede farklı deprem kayıtları ile hem geçmiş depremlere ait kaynak bilgileri hem de yerküre hakkındaki çalışmalar sayıca artmaktadır. Ancak, farklı büyüklükteki depremler istatistik olarak aynı sıklıkta meydana gelmediği için, dünyanın en gelişmiş ağlarında bile kayıt eksiklikleri bulunmaktadır. Başka bir deyişle, bir bölgede olası sismik etkilerin bütünü incelenmek istendiğinde bazı şiddet değerlerine karşılık gelen kayıtlar bulunmamaktadır. Yoğun istasyon dağılımı bulunmayan yer hareketi ağlarında ise bu sorun daha belirgin olarak ortaya çıkmaktadır. Bu sebepler nedeniyle günümüzde yer hareketi benzetim çalışmaları tüm dünyada giderek önem kazanmaktadır. Çalışmanın temel amacı; Türkiye’deki en aktif fay hattı olan Kuzey Anadolu Fay Hattı üzerinde olası depremler için benzeştirilmiş bir yer hareketi veri tabanı hazırlamak, bunun temel özelliklerini incelemek ve bu özellikleri gerçek yer hareketlerinden elde edilmiş bulgular ile karşılaştırmaktır.

A Simulated Strong Ground Motion Database for Potential Earthquake Scenarios on North Anatolian Fault Zone

Strong ground motions, which are recorded by accelerometers at temporary or permanent stations during earthquakes, vary depending on magnitude of the recorded event, distance from the earthquake source to station and local site characteristics of the station. These acceleration-time records are input parameters used in different disciplines ranging from earth sciences to earthquake engineering. Strong ground motion networks in the world and Turkey are constantly expanding; thus, both the information on the sources of past earthquakes and the studies on the Earth are increasing in number with the help of different earthquake records. However, since the earthquakes of different magnitudes do not statistically occur with the same frequency, there are deficiencies even in the world's most developed networks. In other words, when the entire potential seismic effects in a region is to be examined, there are no records corresponding to some intensity values​​. This problem is more evident for the ground motion networks in regions where no dense station distribution is available. Nowadays, ground motion simulation studies are becoming increasingly important all over the world. The main goals of this study are to prepare a simulated earthquake ground motion database on the North Anatolian Fault Zone which is the most active fault zone of Turkey; to investigate the fundamental characteristics of this database, and to present those features by comparing findings obtained from recorded ground motions.

___

  • Akkar S., Cagnan Z., 2010. A local ground-motion predictive model for Turkey and its comparison with other regional and global ground-motion models, Bull. Seismol. Soc. Am. 100, 2978-95.
  • Anderson J.G., Hough S.E.,1984. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies, Bull. Seismol. Soc. Am. 74 (5), 1969-1993.
  • Askan A., Sisman FN., Ugurhan B., 2013. Stochastic strong ground motion simulations in sparsely monitored regions: a validation and sensitivity study on the 13 March 1992 Erzincan (Turkey) earthquake, Soil. Dyn. Earthq. Eng. 55, 170-181, doi: 10.1016/j.soildyn.2013.09.014
  • Askan A., Karimzadeh S., Asten M., Kilic¸ N., Sisman F.N., Erkmen C., 2015. Assessment of seismic hazard in the Erzincan (Turkey) region: construction of local velocity models and evaluation of potential ground motions, Turk. J. Earth. Sci. 24 (6), 529-565, doi: 10.3906/yer-1503-8
  • Asten M., Askan A., Ekincioglu E., Sisman F.N., Ugurhan B., 2014. Site characterisation in north-western Turkey based on SPAC and HVSR analysis of microtremor noise, Exploration Geopyhsics, doi: 10.1071/EG12026
  • Barka A. 1993. Erzincan baseni çevresinin tektoniği ve 13 mart 1992 depremi. 2. Ulusal deprem Müh. Konfransı, TMMOB Inşaat Müh. Odası, Deprem Müh. Türkiye Milli Komitesi, İTÜ Yapı ve Deprem Uyg-Ar.Mrk., 259-270.
  • Beresnev I., Atkinson G.M., 1997. Modeling finite-fault radiation from the n spectrum, Bull. Seismol. Soc. Am. 87 (1), 67-84.
  • Boore D. M.,1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seismol. Soc. Am. 73 (6A), 1865-1894.
  • Boore D.M., Atkinson G.M., 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthquake Spectra 24, 99-138.
  • Karimzadeh S., Askan A., Yakut A., 2017. Assesment of simulated ground motions for their use in structural engineering practice; a case study for Duzce (Turkey), Pure Appl. Geophys. 174 (9), 3325-9.
  • Karimzadeh S., Askan A., Erberik M.A., Yakut A., 2018. Seismic damage assessment based on regional synthetic ground motion dataset: a case study for Erzincan, Turkey, Nat. Hazards 92 (3), 1371-97.
  • Karimzadeh S., Askan A., 2018. Modeling of the 1939 Erzincan, Turkey (Ms7.8) earthquake: observations on anticipated ground motions and felt intensity distribution, Acta Geophys. 66 (3), 293-304.
  • Lav A, Erken A, İyisan R, Ansal A., 1993. Erzincan’da yerel Zemin koşulları ve bunun yapısal hasar üzerindeki etkisi. Türkiye İnşaat Mühendisliği 12. Teknik Kongresi Bildiri Kitabı, 25–38.
  • Mai P.M., Imperatori W., Olsen K.B., 2010. Hybrid broadband ground-motion simulations: Combining longperiod deterministic synthetics with high-frequency multiple S-to-S back-scattering, Bull. Seismol. Soc. Am. 100 (5A), 2124-2142. https://doi.org/10.1785/0120080194
  • Mohammadioun B., Serva L., 2001. Stress drop, slip type, earthquake magnitude, and seismic hazard, Bull. Seismol. Soc. Am. 91 (4), 694-707, https://doi.org/10.1785/0120000067
  • Motazedian D., Atkinson G.M., 2005. Stochastic finite-fault modeling based on a dynamic corner frequency, Bull. Seismol. Soc. Am. 95 (3), 995-1010, doi: 10.1785/0120030207
  • Olsen K.B., Archuleta R.J., Matarese J.R.,1996. Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault, Science 270 (5242), 1628
  • Sorensen M.B., Lang D.H., 2014. Incorporating simulated ground motion in seismic risk assessment-application to the lower Indian Himalayas, Earthq. Spectra 31 (1), 71-95. doi: 10.1193/ 010412EQS001M
  • Ugurhan B., Askan A., 2010. Stochastic strong ground motion simulation of the 12 November 1999 Duzce (Turkey) earthquake using a dynamic corner frequency approach, Bull. Seismol. Soc. Am. 100 (4), 1498-1512, doi: 10.1785/0120090358
  • Ugurhan B., Askan A., Erberik M.A., 2011. A methodology for seismic loss estimation in urban regions based on ground-motion simulations, Bull. Seismol. Soc. Am. 101 (2), 710-725. doi: 10.1785/ 0120100159
  • Utkucu M., Nalbant S.S., McCloskey J., Steacy S., Alptekin O., 2003. Slip distribution and stress changes associated with the 1999 November 12, Duzce (Turkey) earthquake (Mw=7.1), Geophys. J. Int. 153 (1), 229-41.
  • Wells D.L., Coppersmith K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement, Bull. Seismol. Soc. Am. 84 (4), 974-1002.