Köprü Yapılarının Eş Zamanlı Sistem ve Girdi Tanılaması

Bu makale, deprem kayıtlarını kullanarak köprü yapılarının sistem tanılaması için yeni bir yöntem sunmaktadır. Köprüler, genellikle yapısal elemanlarının geniş mesafelere yayılmasından ötürü, diğer yapılara nispeten yer hareketlerinin uzamsal değişkenliğine daha hassastırlar. Bu nedenle, özellikle temelleri değişik zemin türlerine oturan uzun ve çok kolonlu köprülerin simülasyonlarında kullanılacak nitelikte yer hareketi kayıtlarının ölçümü karmaşık bir süreçtir. Bilhassa hem eylemsizlik hem de kinematik Zemin-Yapı Etkileşimi etkilerinin yaygın olduğu durumlarda, köprü Temel Girdi Hareketlerinin doğrudan ölçümü mümkün olmayabilir. Bu çalışmada, uzamsal olarak seyrek bir şekilde ölçülmüş sismik yapı davranış kayıtlarını kullanarak eş zamanlı sistem ve girdi tanılaması sağlayan yeni bir yöntem önerilmektedir. Önerilen metodun teyidi ve gerçek ölçekte problemlere uygulanabilirliğini doğrulamak adına, yöntem Golden Gate Köprüsü'ne uygulanmış ve elde edilen sonuçlar mevcut veriler ile karşılaştırılmıştır.

Joint System-Input Identification of Bridge Structures

This paper presents a novel framework for system identification of bridge structures using recorded earthquake data. Bridge structures are prone to spatial variability of ground motions because they extend over relatively long distances. So, input motion measurement is a challenging task, especially for long bridges with multiple piers. Moreover, direct measurement of the bridge Foundation Input Motions (FIMs) may not be possible due to both inertial and kinematic Soil-Structure Interaction (SSI) effects. In this study, we propose a joint system-input identification solution using sparsely measured earthquake-induced responses. We verify this method and its applicability for real scale problems using simulated data obtained from the Golden Gate Bridge.

___

  • Abdel-Ghaffar A.M., 1976. Dynamic analyses of suspension bridge structures, California Institute of Technology Earthquake Engineering Research Laboratory (Unpublished), Pasadena California.
  • Abdel-Ghaffar A.M., Rubin L.I., 1983a. Vertical seismic behaviour of suspension bridges, Earthq. Eng. Struct. Dyn. 11 (1), 1-19.
  • Abdel Ghaffar A.M., Rubin L.I., 1983b. Lateral Earthquake Response of Suspension Bridges, J. Struct. Eng. 109 (3), 664-675.
  • Abdel-Ghaffar A.M., Scanlan R.H., 1985a. Ambient vibration studies of golden gate bridge: I. Suspended structure, J. Eng. Mech. 111 (4), 463-482.
  • Abdel-Ghaffar A.M., Scanlan R.H., 1985b. Ambient Vibration Studies of Golden Gate Bridge: II. Pier-Tower Structure, J. Eng. Mech. 101 (4), 483-499.
  • Abdel-Ghaffar A.M., Scanlan R.H., Diehl J., 1985. Analysis of the dynamic characteristics of the Golden Gate Bridge by ambient vibration measurements. Princeton University.
  • Abdel-Ghaffar A.M., Stringfellow R.G., 1984a. Response of suspension bridges to travelling earthquake excitations: Part I. Vertical response, Int. J. Soil Dyn. Earthq. Eng. 3 (2), 62-72.
  • Abdel-Ghaffar A.M., Stringfellow R.G., 1984b. Stringfellow, Response of suspension bridges to travelling earthquake excitations: Part II-lateral response, Int. J. Soil Dyn. Earthq. Eng. 3 (2), 73-81.
  • Astroza R., Ebrahimian H., Li Y., Conte J.P., 2017. Bayesian nonlinear structural SE model and seismic input identification for damage assessment of civil structures, Mech. Syst. Signal Process 93, 661-687.
  • Bendat J.S., Piersol A.G., 1993. Engineering applications of correlation and spectral analysis, 2nd Ed., Wiley, NY, USA, 458 pp.
  • Baron F., Arikan M., Hamati R.E., 1976. The effects of seismic disturbances on the Golden Gate Bridge. University of California, College of Engineering, Earthquake Engineering Research Center.
  • CESMD, 2017. Center of Engineering Strong Motion Data. Erişim adresi: www.strongmotioncenter.org , (01/01/2017)
  • Chang M., Pakzad S.N., 2013. Modified Natural Excitation Technique for Stochastic Modal Identification, J. Struct. Eng. 139 (10), 1753-1762.
  • CSI, 2002. Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual, Comput. Struct. Inc., Berkeley, California, USA.
  • Çelebi M., 2012. Golden Gate Bridge response: a study with low-amplitude data from three earthquakes, Earthquake Spectra 28 (2), 487-510.
  • Dameron R.A., Dunham R.S., Castro J.C., 1994. Nonlinear analysis and experimental validation of a stiffening truss chord of the golden gate bridge, in Computing in Civil Engineering (New York), (2), 1106-1114.
  • Ebrahimian H., Astroza R., Conte J.P., de Callafon R.A., 2017. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation, Mech. Syst. Signal Process 84, 194-222.
  • Game T., Vos C., Morshedi R., Gratton R., Alonso-Marroquin F., Tahmasebinia F., Alonso-Marroquin F., 2016. Full dynamic model of Golden Gate Bridge, in AIP Conference Proceedings 1762 (1), p. 20005.
  • Gurelli M.I., Nikias C.L., 1995. EVAM: An Eigenvector-Based Algorithm for Multichannel Blind Deconvolution of Input Colored Signals, IEEE Trans. Signal Process. 43 (1), 134-149.
  • Haykin S., 2001. Kalman Filters (In: Kalman Filtering and Neural Networks, Editor: Haykin S., John Wiley & Sons Inc., USA, 280 p, doi 10.1002/0471221546), 1-21.
  • Hibbitt, Karlsson, Sorensen, 2001. ABAQUS/standard User’s Manual 1., Pennsylvania State University, USA.
  • Huang M., Hipley P., Shakal A., 2013. Seismic Instrumentation of Toll Bridges in California, in Sevnetgh National Seismic Conference on Brdiges and Highways, Oakland, Californa, Paper 2013, p10.
  • Imbsen R., Schamber R., 1999. Seismic retrofit of the north approach viaduct of the Golden Gate Bridge, Transp. Res. Rec. J. Transp. Res. Board (1688), 154-162.
  • Ingham T.J., Rodriguez S., Nader M.N., Taucer F., Seim C., 1995. Seismic retrofit of the golden gate bridge in Proc., National Seismic Conf. on Bridges and Highways: Progress in Research and Practice, 1995.
  • Julier S.J., Uhlmann J.K., 1997. New extension of the Kalman filter to nonlinear systems, Proceeding SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, doi.org/10.1117/12.280797, 182-193.
  • Ketchum M.A., Seim C., 1990. Golden Gate bridge seismic evaluation, TY Lin International.
  • Kiureghian A.D., 1996. A Coherency Model for Spatially Varying Ground Motions, Earthq. Eng. Struct. Dyn. 25, 99-111.
  • Ljung L., 1987. System Identification - Theory for the User, Prentice-Hall, Englewood Cliffs, N.J., USA.
  • Matarazzo T.J., Pakzad S.N., 2014. Modal identification of golden gate bridge using pseudo mobile sensing data with STRIDE, in Dynamics of Civil Structures, Vol. 4, Springer, 293-298.
  • Matarazzo T.J., Pakzad S.N., 2016. STRIDE for structural identification using expectation maximization: iterative output-only method for modal identification, J. Eng. Mech. 142 (4), p. 4015109.
  • McKenna F., 2011. OpenSees: a framework for earthquake engineering simulation, Comput. Sci. Eng. 13 (4), 58-66.
  • Matlab, 2004. MATLAB The Language of Technical Computing, Components 3 (7), 750.
  • Nader M., Ingham T.J., 1995. Seismic Retrofit of the Towers of the Golden Gate Bridge, in Proceedings of the National Seismic Conference on Bridges and Highways, San Diego, CA, December.
  • Nakamura Y., Kiureghian A.D., Liu D., 1993. Multiple-support response spectrum analysis of the Golden Gate Bridge 93 (5). Earthquake Engineering Research Center, University of California, USA.
  • Nishkian L.H., 1947. Vertical vibration recorders for the Golden Gate Bridge, Bull. Seismol. Soc. Am. 37 (2), 81-88.
  • Pakzad S.N., Fenves G.L., 2009. Statistical Analysis of Vibration Modes of a Suspension Bridge Using Spatially Dense Wireless Sensor Network, J. Struct. Eng. 135 (7), 863-872.
  • Pakzad S.N., Fenves G.L., Kim S., Culler D.E., 2008. Design and Implementation of Scalable Wireless Sensor Network for Structural Monitoring, J. Infrastruct. Syst. 14 (1), 89-101.
  • Pakzad S.N., Rocha G.V., Yu B., 2011. Distributed modal identification using restricted auto regressive models, Int. J. Syst. Sci. 42 (9), 1473-1489.
  • Reid J.G., 1977. Structural Identifiability in Linear Time-Invariant Systems, IEEE Trans. Automat. Contr. 22 (2), 242-246.
  • Rodriguez S., Ingham T.J., 1995. Seismic protective systems for the stiffening trusses of the Golden Gate Bridge, in Proceedings of the National Seismic Conference on Bridges and Highways.
  • Seim C., Ketchum M., 1990. Golden Gate Bridge Mass Transit Feasibility Study, Golden Gate Bridge, Highway and Transportation District, San Francisco, California.
  • Seim C., Rodriguez S., 1993. Seismic performance and retrofit of the Golden Gate bridge, in Structural Engineering in Natural Hazards Mitigation, 133-138.
  • Shakal A.F., Petersen C.D., Cramlet A.B., Darragh R.B., 1995. CSMIP near-real-time strong motion monitoring system: Rapid data recovery and proceZYEng for event response, In Proceedings SMIP95 Seminar on Seismological and Engineering Implications of Recent Strong-Motion Data.
  • Shrikhande M., Gupta V.K., 1999. Dynamic soil-structure interaction effects on the seismic response of suspension bridges, Earthq. Eng. Struct. Dyn. 28 (11), 1383-1403.
  • Strand7, 2007. Finite Element Analysis System. Strand7 Software Sydney, Australia.
  • Strauss J.B., Paine C.E., 1938. The Golden Gate Bridge: report of the chief engineer to the Board of directors of the Golden Gate Bridge and Highway and Transportation District, San Francisco, California, USA, 246 p.
  • Tanaka H., Davenport A.G., 1983. Wind‐Induced Response of Golden Gate Bridge, J. Eng. Mech. 109 (1), 296-312.
  • Vincent G.S., 1962. Golden Gate bridge vibration studies, Trans. Am. Soc. Civ. Eng. 127 (2), 667-701.
  • Vincent G.S., Labse M., 1962. Correlation of predicted and observed suspension bridge behavior, Trans. Am. Soc. Civ. Eng. 127 (2), 646-666.
  • Wolf J.P., Deeks A.J., 2004. Foundation vibration analysis: A strength of materials approach, Butterworth-Heinemann Publ.Comp, U.K., ISBN 978-0750661645, 240 p.
  • Zerva A., Zervas V., 2002. Spatial variation of seismic ground motions: An overview, Appl. Mech. Rev. 55 (3), 271.