Türkiye’de belirlenen istasyon çiftlerinde yağış-yükselti ilişkisi

Yükselti arttıkça yağışın da artacağı yönündeki genel kabul, uluslararası literatürde geçerliliğini korurken, ulusal yayınlarda çoğunlukla Schreiber Formülü olarak bilinen eşitlikten yararlanılmaktadır. Formülün, yağışın belirli bir yükselti mesafesinde belirli bir miktarda artacağını önerdiği model, statik bir yaklaşım olup, yağışın yükseltiyle artmadığı durumları tespit etmede kullanışsızdır. Yağış, doğal çevrenin başlıca bileşenlerinden biri olarak, beşeri hayatı doğrudan veya dolaylı yollardan etkilemektedir. Bu bakımdan yağışın gerçeğe yakın modellenmesi, ekonomik faaliyetlerin sürdürülebilirliği ve planlaması açısından önemlidir. Yağışın yükseltiyle nasıl değiştiğini incelemeye alan bu çalışmanın temel yöntemi, belirlenen istasyon çiftlerinde yağış gradyanlarının hesaplanmasına dayanmaktadır. Türkiye’de yeterli veri uzunluğuna sahip 542 adet istasyon çiftinde okunan sonuçlar, yağışın yükseltiyle azaldığı durumların da dikkat çekici ölçülerde olduğunu ortaya koymaktadır. Çiftlerden 130 tanesinde negatif gradyan, pozitif gradyandan daha çok sayıdadır. 2005-2021 dönemine ait aylık verilerle elde edilen sonuçların işaret ettiği bir diğer husus, pozitif ve negatif gradyanların görülme yüzdeleri arasındaki belirgin mevsimselliktir. Buna göre negatif gradyanının görülme yüzdesi soğuk periyotta fazlalaşmakta, yazın ise azalmaktadır. İki mevsim arasındaki hava sıcaklıklarıyla birlikte yoğuşma seviyesindeki belirgin farklılıklar gradyanın pozitif ya da negatif olmasını belirlemektedir. Yoğuşma seviyesinin bir diğer deyişle bulut tabanı yüksekliğinin alçaldığı kış aylarında negatif gradyan tespit etmek daha olasıdır.

The precipitation-elevation relationship in identified station pairs in Turkey

While international publications generally assume that precipitation increases with increasing elevation, the local literature mostly uses the Schreiber formula, which simply shows that precipitation increases by a certain amount at a given elevation distance. The Schreiber formula based model is a static one and not useful in identifying situations where precipitation does not increase with elevation. As a main component of the natural environment, precipitation directly and indirectly impacts human activities. Hence, realistic precipitation modeling is important for sustainability and economic planning. In this study, the variation of precipitation with elevation was investigated by calculating precipitation gradients at 542 identified station pairs with sufficient data length in Turkey. The findings from these station pairs revealed that there were a remarkable number of cases where precipitation decreases with elevation. In 130 pairs, the negative gradient outnumbered the positive gradient. Using monthly data for the period 2005– 2021, it was pointed out that there is significant seasonality between the percentages of positive and negative gradients. The percentage of negative gradient increases during the winter and decreases in summer. Significant differences in the condensation level along with air temperatures between the two seasons determine a positive or negative gradient. A negative gradient is more likely to be detected in winter when the condensation level, that is, the cloud base height, is lower.

___

  • Ardel, A. (1960). Umumi coğrafya dersleri (2. baskı). İstanbul Üniversitesi Yayınları.
  • Atalay, İ. (2010). Uygulamalı klimatoloji (1. baskı). META Basım Matbaacılık Hizmetleri.
  • Aydınözü, D. (2008). Yükseldikçe bölgelerimize göre her 100 m.deki yağış artışı üzerine bir deneme. Marmara Coğrafya Dergisi, 17, 172–184.
  • Basist, A., Bell, G. D., & Meentemeyer, V. (1994). Statistical relationships between topography and precipitation patterns. Journal of Climate, 7, 1305–1315. https://doi.org/ 10.1175/1520-0442(1994)007<1305:SRBTAP>2.0.CO;2
  • Biricik, A. S. (2009). Fiziki coğrafya-jeomorfoloji ile hidrolojinin temel prensipleri ve araştırma yöntemleri. Gonca Yayınevi.
  • Burns, J. I. (1953). Small-scale topographic effects on precipitation distribution in San Dimas Experimental Forest. Transactions, American Geophysical Union, 34(5), 761–767. https://doi. org/10.1029/TR034i005p00761
  • Clyde, G. D. (1931). Relationship between precipitation in valleys and on adjoining mountains in northern Utah. Monthly Weather Review, 59(3), 113–117. https://doi.org/ 10.1175/1520-0493(1931)59<113:RBPIVA>2.0.CO;2
  • Davis, W. M. (1894). Physical geography in the university. The University of Chicago Press Journal, 66–100. https://doi. org/10.1086/606891
  • Davis, W. M. (1899). The geographical cycle. The Geographical Journal, 14(5), 481–504.
  • Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. International Journal of Climatology, 25(3), 351–363. https://doi.org/10.1002/joc.1131
  • Erinç, S. (1961). Doğu Karadeniz kıyılarında fön ve termik tesirleri hakkında. Türk Coğrafya Dergisi, 21, 15–30.
  • Eriş, E., & Ağıralioğlu, N. (2009). Effect of coastline configuration on precipitation distribution in coastal zones. Hydrological Processes, 23(25), 3610–3618. https://doi.org/10.1002/hyp.7464
  • Fernow, B. E., & Gannett, H. (1888). The influence of forests on the quantity and frequency of rainfall. Science, 12(303), 242–244. https://doi.org/10.1126/science.ns-12.303.242
  • Glazirin, G. E. (1997). Precipitation distribution with altitude. Theoretical and Applied Climatology, 58, 141–145. https://doi. org/10.1007/BF00865014
  • Hanson, C. L. (1982). Distribution and stochastic generation of annual and monthly precipitation on a mountainous watershed in Southwest Idaho. Water Resources Bulletin, 18(5), 875–883. https://doi.org/10.1111/j.1752-1688.1982.tb00085.x
  • Hatipoğlu, İ. K., & Uzun, A. (2020). Melet Irmağı Havzası’nda erozyon riskinin MICONA modeli ile değerlendirilmesi. Türk Coğrafya Dergisi, 74, 17–31. https://doi.org/10.17211/tcd.644135
  • Heberden, W. (1769). Of the different quantities of rain, which appear to fall, at different heights, over the same spot of ground. Philosophical Transactions (1683-1775), 59, 359–361. http://dx. doi.org/10.1098/rstl.1769.0047
  • Hilgard, E. W. (1893). The physical and industrial geography of California. The Geographical Journal, 1(6), 536–539. https://doi. org/10.2307/1773968
  • Homersham, S. C. (1851). An account of some obsevations made on the depth of rain which falls in the same localities at different altitudes in the hilly districts of Lancashire, Cheshire and Derbyshire. Royal Society Publishing, 5, 759–760. https://doi. org/10.1098/rspl.1843.0159
  • Işık, F., Bahadır, M., & Çağlak, S. (2019). Artvin ilinde yağışın mekânsal dağılışı üzerine bir deneme, Schreiber formülü. Uluslararası Artvin Sempozyumu, Ekim 2018, 391–403.
  • Jevons, W. S. (1861). On the deficiency of rain in an elevated rain-gauge, as caused by wind. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 22(149), 421–433. https://doi.org/10.1080/14786446108643180
  • Kollias, P., Miller, M. A., Johnson, K. L., Jensen, M. P., & Troyan, D. T. (2009). Cloud, thermodynamic, and precipitation observations in West Africa during 2006. Journal of Geophysical Research Atmospheres, 114(13), 1–16. https://doi.org/ 10.1029/2008jd010641
  • Lee, C. H. (1911). Precipitation and altitude in the Sierra. Monthly Weather Review, 39(7), 1092–1099. https://doi.org/ 10.1175/1520-0493(1911)39<1092b:PAAITS>2.0.CO;2
  • Linsley, R. K. (1958). Correlation of rainfall intensity and topography in Northern California. Transactions American Geophysical Union, 39(1), 15–18. https://doi.org/10.1029/TR039i001p00015
  • Lull, H. W., & Ellison, L. (1950). Precipitation in relation to altitude in Central Utah. Ecology, 31(3), 479–484. https://doi. org/10.2307/1931507
  • McAdie, A. G. (1909). The rainfall of Hetch Hetchy Valley. Monthly Weather Review, 37(12), 1117–1129. https://doi.org/ 10.1175/1520-0493(1909)37[1117:TROHHV]2.0.CO;2
  • McAdie, A. G. (1914). The rainfall of California. University of California Publications in Geography, 1, 127–140. https://doi. org/10.2307/201288
  • Poulter, R. M. (1936). Configuration, air mass and rainfall. Quarterly Journal of the Royal Meteorological Society, 62, 49–76. https:// doi.org/10.1002/qj.94706226308
  • Robbins, W. W. (1910). Climatology and vegetation in Colorado. Botanical Gazette, 49(4), 256–280. https://doi.org/10.1086/330175
  • Sarış, F., Keserci, F., & Bayrakdar, C. (2021). Yerel yağış değişkenliğine bir örnek: Fethiye-Söğütlüdere karşılaştırması. Türk Coğrafya Dergisi, 77, 87–98. https://doi.org/10.17211/tcd.928567
  • Seko, K. (1987). Seasonal variation of altitudinal dependence of precipitation in Langtang Valley, Nepal Himalayas. Bulletin of Glaciological Research, 5, 41–47.
  • Sevruk, B., & Mieglitz, K. (2002). The effect of topography, season and weather situation on daily precipitation gradients in 60 Swiss valleys. Water Science and Technology, 45(2), 41–48. https://doi.org/10.2166/wst.2002.0025
  • Sharon, D. (1972). The spottiness of rainfall in a desert area. Journal of Hydrology, 17, 161–175. https://doi.org/10.1016/0022- 1694(72)90002-9
  • Smallshaw, J. (1953). Some precipitation-altitude studies of the Tennessee Valley Authority. Transactions, American Geophysical Union, 34(4), 583–588. https://doi.org/10.1029/ TR034i004p00583
  • Spreen, W. C. (1947). A determination of the effect of topography upon precipitation. Transactions, American Geophysical Union, 28(2), 285–290. https://doi.org/10.1029/TR028i002p00285
  • Unwin, D. J. (1969). The areal extension of rainfall records: An alternative model. Journal of Hydrology, 7, 404–414. https://doi. org/10.1016/0022-1694(69)90094-8
  • Varney, B. M. (1920). Monthly variations of the precipitation-altitude relation in the central Sierra Nevada of California. Monthly Weather Review, 48(11), 648–650. https://doi.org/ 10.1175/1520-0493(1920)48<648:MVOTPR>2.0.CO;2
  • Wang, L., Chen, R., Song, Y., Yang, Y., Liu, J., Han, C., & Liu, Z. (2018). Precipitation–altitude relationships on different timescales and at different precipitation magnitudes in the Qilian Mountains. Theoretical and Applied Climatology, 134(3–4), 875–884. https://doi.org/10.1007/s00704-017-2316-1
  • Yılmaz, E., Çalışkan, O., Çiçek, İ., & Türkoğlu, N. (2012). Türkiye’de sıcaklık ve yağışın düzensizliği 1964-2003. VII. TÜCAUM Coğrafya Sempozyumu Bildiriler Kitabı, 57–67.
  • Yılmaz, E., & Darende, V. (2021). Türkiye’de yağış ölçümü yapılan manuel-otomatik meteoroloji gözlem istasyonu verilerinin karşılaştırılması. Türk Coğrafya Dergisi, 77, 53–66. https://doi. org/10.17211/tcd.834500