Çilek Yetiştiriciliğinde Tozlayıcıların Kullanım Amaçları

Son yıllarda Ülkemizde ve Dünya’da çilek üretimi giderek artmaktadır. Bu artışın önemli nedenleri çilek meyvesinin önemli bir antioksidan kaynağı olması, aroması, güzel görünümü ve yetiştiriciliğinin önemli bir ticaret kolu olmasıdır. Bugüne kadar bu meyve türünün verim ve kalitesini arttırmaya yönelik pek çok çalışma yapılmıştır. Zira verim ve kalite pek çok faktörün etkileşimi sonucunda ortaya çıkmaktadır. Bu derlemede çilek yetiştiriciliğinde verim ve kalite üzerine çok önemli etkisi olan tozlayıcı böceklerle yapılan çalışmalara yer verilmiştir. Özellikle bal ve bombus arılarının etkinliği tartışılmıştır. Arıların çilek çiçeklerinde tozlanma ve döllenme düzeyini arttırarak meyve iriliğini etkiledikleri ve bunun da toplam verim üzerine olumlu yansıdığı özetlenmiştir. Ticari değeri yüksek olan erkenci üretimde bozuk şekilli meyve oluşumu arı kullanımı ile önemli ölçüde azaltıldığı bildirilmiştir. Çalışmalar sonucunda önemli bir bulgu da arıların ziyaret edecekleri çeşit seçiciliğinde bu çeşidin çiçekleri tarafından salgılanan koku bileşiklerinin çiçek morfolojisinden daha etkili olduğunun bulunmasıdır. Bu da bozuk şekilli meyve miktarını azaltma hedefi olan ıslahçılar için önemli bir strateji olabilir. Böylece ıslahçı arıları cezp edici kokulara sahip çiçekleri olan çeşitleri ıslah ederek verimli ve düzgün şekilli meyve üretimini arttırabilir. Ayrıca çilekler için önemli bir problem olan Botrytis ile mücadelede bir entomopatojen olan T. harzianum 1295-22 ırkının biyolojik olarak Botrytis’in kontrolünde etkin olduğu da vurgulanmıştır.
Anahtar Kelimeler:

Bozuk şekilli meyve, kalite, verim

___

  • Klein A, Vaissie BE, Cane JH, Steffan-Sewenter I, Cunningham SA, Kremen C, Tscharntke T: Importance of pollinators in changing landscapes for world crops. Proceed. Royal Society B 274:303–313, 2007.
  • Lomolino MV, Riddle BR, Brown JH: Biogeography. Sunderland Massachusetts, Sinauer Associates, Inc. 2006.
  • Schleuning M, Fründ J, Klein A, Abrahamczyk S, Alarcón R, Albrecht M, Andersson GK, Bazarian S, Böhning-Gaese K, Bommarco R: Specialization of mutualistic interaction networks decreases toward tropical latitudes. Current Biology 22, 1925–1931, 2012.
  • Eilers EJ, Kremen C, Smith Greenleaf S, Garber AK, Klein AM: Contribution of Pollinator-Mediated Crops to Nutrients in the Human Food Supply. PLoS One 6: e21363, 2011.
  • Klatt BK, Holzschuh A, Westphal C, Clough Y, Smit I, Pawelzik E, Tscharntke T: Bee pollination improves crop quality, shelf life and commercial value. Proceed. Royal Society B281:20132440, 2014.
  • Bagnara D, Vincent C: Role of insect pollination and plant genotype in strawberry fruit set and fertility. J. Horticult. Sci. 63, 69–75, 1988.
  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R: The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol 170(1):23–40, 1992.
  • Gegear R, Laverty T: Flower constancy in bumblebees: a test of the trait variability hypothesis. Anim Behav 69(4): 939–949, 2005.
  • Ishii HS, Hirabayashi Y, Kudo G: Combined effects of inflorescence architecture, display size, plant density and empty flowers on bumble bee behaviour: experimental study with artificial inflorescences. Oecologia 156(2):341–350, 2008.
  • Dudareva N, Pichersky E: Handbook Biology of floral scent. CRC Press Taylor and Francis Group, 2006.
  • Raguso RA: Floral scent in a whole-plant context: moving beyond pollinator attraction. Funct Ecol 23(5):837–840, 2009.
  • Rasmont P, Regali A, Ings TC, Lognay G, Baudart E, Marlier M, Chittka L: Analysis of pollen and nectar of Arbutus unedo as a food source for Bombus terrestris (Hymenoptera: Apidae). J Econ Entomol 98(3):656–663, 2005.
  • Goulson D: Bumblebees behaviour, ecology and conservation, 2nd edn. Oxford University Press, Oxford, 2010.
  • Wright GA, Schiestl FP: The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signaling of floral rewards. Funct Ecol 23(5):841–851, 2009.
  • de Oliveira D, Bagnara D, Vincent C: Role de J’entomopollinisation chez Ie fraisier, pp. 224-328. In Commission des Productions Vegetales du Quebec. Symposium sur la culture de la fraise: perspectives de developpement. Ministere de J’Agriculture, des Pecheries et de J’Alimentation du Quebec, 1985.
  • Chagnon M, Gingbas J, De Oliveira D: Effect of Honey Bee (Hymenoptera: Apidae) Visits on the Pollination Rate of Strawberries. Entomological Society of America, 1989.
  • Glaettli M, Barrett SCH: Pollinator responses to variation in floral display and flower size in dioecious Sagitta latifolia (Alimataceae). New Phytol 179: 1193–1201, 2008.
  • Karron JD, Mitchel RJ: Effects of floral display size on male and female reroductive success in Mimulus ringens. Ann Bot 109: 563–570, 2012.
  • Klatt BK, Burmeister C, Westphal C, Tscharntke T, von Fragstein M: Flower Volatiles, Crop Varieties and Bee Responses. Plos One. 8(8): e72724, 2013.
  • Ceuppens B, Ameye M, Langenhove HV, Roldan-Ruiz I, Smagghe G: Characterization of volatiles in strawberry varieties ‘Elsanta’ and ‘Sonata’ and their effect on bumblebee flower visiting. Arthropod-Plant Interactions. 9:281-287, 2015.
  • Friedman M, Henika PR, Mandrell RE: Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 65(10):1545–1560, 2002.
  • Free JB: Pollination of strawberries by honey bees. J. Hortic. Sci. 43: 107-111, 1968.
  • Thompson PA: Environmental effects on pollination and receptacle development in strawberry. J. Hortie. Sci. 46: 1-12, 1971.
  • Connor LJ: Components of strawberry pollination in Michigan. Ph.D. thesis, Michigan State University, East Lansing, 1972.
  • Pion S, de Oliveira D, Paradis RO: Agents pollinisateurs et productivite du fraisier ‘Redcoat’ (Fragaria x ananassa Duch.). Phytoprotection 61(2): 72-76, 1980.
  • Ariza MT, Soria C, Medina JJ, Martinez-Ferri E: Fruit misshapen in strawberry cultivars (Fragaria x ananassa) is related to achenes functionality. Ann. Appl. Biol. 158, 130–138, 2010.
  • Ariza MT. Soria C, Medina JJ, Martínez-Ferri E:. Fruit misshapen in strawberry cultivars (Fragaria 3ananassa) is related to achenes functionality. Ann. Appl. Biol. 158: 130–138, 2011.
  • Carew JG, Morretini M, Battey NH: Misshapen fruits in strawberry. Small Fruit Rev. 2:37–50, 2003.
  • Ariza MT, Soria C, Medina-Mínguez JJ, Martínez-Ferri E: Incidence of Misshapen Fruits in Strawberry Plants Grown under Tunnels Is Affected by Cultivar, Planting Date, Pollination, and Low Temperatures. HortScience 47(11): 1569-1573, 2012.
  • Salamé-Donoso TP, Santos BM, Chandler CK, Sargent SA: Effect of high tunnels on the growth, yields, and soluble solids of strawberry cultivars in Florida. Intl. J. Fruit Sci. 10:249–263, 2010.
  • Kronenberg HG, Wassenaar, LM: Dormancy and chilling requirements of strawberry varieties for early forcing. Euphytica 21:454– 459, 1972.
  • Nitsch JP: Growth and morphogenesis of the strawberry as related to auxin. Am. J. Bot. 37:211–215, 1950.
  • Csukasi F, Osorio S, Gutierrez JR, Kitamura J, Giavalisco P, Nakajima M, Fernie AR, Rathjen JP, Botella MA, Valpuesta V, Medina-Esco N: Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytol. 191, 376–390, 2011.
  • Roussos PA, Denaxa N-K, Damvakaris T: Strawberry fruit quality attributes after application of plant growth stimulating compounds. Sci. Horticult. 119, 138–146, 2009.
  • Given NK, Venis MA, Grierson D: Hormonal regulation of ripening in the strawberry, a non climacteric fruit. Planta 174, 402–406, 1988.
  • Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJP, Tscharntke T, Verhulst J: On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society B-Biological Sciences 276: 903–909, 2009.
  • Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM: The second Silent Spring?. Nature. 400: 611–612, 1999.
  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE: Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25: 345–353, 2010.
  • Feltham H, Park K, Minderman J, Goulson D: Experimental evidence that wildflower strips increase pollinator visits to crops. Ecology and Evolution. 5, 3523-3530, 2015.
  • Andersson GKS, Rundlöf M, Smith HG: Organic Farming Improves Pollination Success in Strawberries. Plos one. 7(2).e31599, 2012.
  • Grab H, Blitzer EJ, Danforth B, Loeb G, Poveda K: Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Scientific Reports.7: 45296, 2017.
  • Mommaerts V, Put K, Smagghe G: Bombus terrestris as pollinator-and-vector to suppress Botrytis cinerea in greenhouse strawberry. Pest Mang. Sci. 67: 1069-1075, 2010.
  • Wilcox WF, Seem RC: Relationship between strawberry gray mold incidence, environmental variables and fungicide applications during different periods of the fruiting season. Phytopathology 84:264–270, 1994.
  • Cota LV, Maffia LA, Mizubuti ESC, Macedo PEF: Biological control by Clonostachys rosea as a key component in the integrated management of strawberry gray mold. Biol Control 50:222–230, 2009.
  • Kovach J, Petzoldt R, Harman GE: Use of Honey Bees and Bumble Bees to Disseminate Trichoderma harzianum 1295-22 to Strawberries for Botrytis Control. Biological Control 18, 235-242, 2000.