Post-COVID-19 dönemi akciğerde sekel gelişen hastalarda VEGF, IL-17 ve IgG4 düzeyleri

Giriş: COVID-19 hastalarının epidemiyolojik ve klinik özellikleri tanımlanmış olmasına rağmen; hastalığın patogenezi, uzun dönem etkiler hala belirsizdir. Pulmoner sekel bu geç sonuçlardan biridir. Bu çalışmada; COVID-19 ile enfekte olan ve farklı klinik seyir gösteren hastaların akut enfeksiyon sonrası dönemde interlökin-17 (IL-17), vasküler endotelyal büyüme faktörü (VEGF), immunglobulin G4 (IgG4) düzeylerinin pulmoner sekel gelişimine etkilerini değerlendirmek hedeflenmiştir. Materyal ve Metod: Toplam 90 hasta çalışmaya dahil edildi. Akut enfeksiyon sonrası 3-12 hafta arası kontrol amaçlı başvuran hastalardan; radyolojik olarak pulmoner sekel bulguları (traksiyon bronşektazisi, interseptal kalınlaşma, parankim yapısında bozukluklar) olan hastalar Grup I (n= 32), radyolojik olarak sekelsiz iyileşen hastalar Grup II (n= 32), COVID olmayan sağlıklı bireyler Grup III (n= 26) olarak sınıflandırıldı. Bulgular: Grup I’deki hastaların yaş ortalaması Grup II ve III’e göre anlamlı derecede yüksek saptandı (p< 0,001). Vasküler endotelyal büyüme faktörü ve IL-17 değerleri arasında, bulundukları hasta grubuna göre istatistiksel olarak anlamlı fark vardı (p< 0,05). Grup I ve III’ün VEGF değerleri Grup II’deki hastalara göre anlamlı derecede düşüktü (p< 0,001). Grup I ve II’ nin IL-17 değerleri Grup III’e göre anlamlı olarak düşük saptandı (p= 0,005). IgG4 değerleri açısından gruplar arasında istatistiksel olarak anlamlı bir ilişki yoktu. Sonuç: Çalışmamızda COVID sonrası pulmoner sekel ile iyileşen hastalarda VEGF, IL-17 ve IgG4'ün profibrotik etkilerinin baskın olmadığı; dolayısıyla bahsedilen veya henüz ortaya konmamış farklı mekanizmaların bu sonuca neden olabileceği düşünülmektedir.

VEGF, IL-17 and IgG4 levels of patients with lung sequelae in post-COVID-19 period

Introduction: Although the epidemiological and clinical characteristics of COVID-19 patients have been described; the pathogenesis of the disease and its long-term consequences are still unclear. Pulmonary fibrosis is one of these late outcomes. In this study we evaluated Interleukin-17 (IL-17), vascular endothelial growth factor (VEGF), and immunoglobulin G4 (IgG4) levels of COVID-19 infected patients with different clinical course and their effect on pulmonary fibrosis in post-COVID period. Materials and Methods: In total, 90 patients were evaluated. Among the patients who presented for a control visit between 3-12 weeks after acute infection; patients with signs of pulmonary sequelae radiologically (traction bronchiectasis, interseptal thickening, disorders in parenchyma architecture) were classified as Group I (n= 32), patients who recovered without sequelae radiologically as Group II (n= 32). The Control group included healthy individuals who did not have COVID-19, and was classified as Group III (n= 26). Results: The mean age in Group I was significantly higher than Group II and III (p< 0.001). There was a statistically significant difference between the VEGF and IL-17 values based on the patient group they are in (p< 0.05). Vascular endothelial growth factor values of Group I and III were significantly lower than the patients in Group II (p< 0.001). IL-17 values of Group I and II were found to be significantly lower than Group III (p= 0.005). There was no statistically significant relationship between groups in terms of IgG4 values. Conclusion: In our study, it was observed that the profibrotic effects of VEGF, IL-17, and IgG4 were not dominant in patients who recovered with pulmonary sequelae after COVID; therefore, it is thought that different mechanisms mentioned or not yet revealed may cause this outcome.

___

  • 1. World Health Organization. Pneumonia of unknown cause-China (Online), 2020; Available from: https://www. who.int/csr/don/05-january-2020- pneumonia-ofunkown- cause-china/en/.
  • 2. McDonald LT. Healing after COVID-19: Are survivors at risk for pulmonary fibrosis? Am J Physiol Lung Cell Mol Physiol 2021; 320(2): L257-L265. https://doi.org/10.1152/ ajplung.00238.2020
  • 3. Thille AW, Esteban A, Fernández-Segoviano P, Rodriguez JM, Aramburu JA, Vargas-Errázuriz P, et al. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: A prospective cohort study of clinical autopsies. Lancet Respir Med 2013; 1: 395-401. https://doi.org/10.1016/S2213-2600(13)70053-5
  • 4. Sheahan T, Morrison TE, Funkhouser W, Uematsu S, Akira S, Baric RS, et al. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog 2018; 4(12): e1000240. https://doi.org/10.1371/ journal.ppat.1000240
  • 5. Wong CK, Lam CW, Wu AK, Ip WK, Lee NLS, Chan HIS, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 2004; 136: 95-103. https://doi.org/10.1111/j.1365-2249.2004.02415.x
  • 6. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: The perspectives on immune responses Cell Death & Differentiation 2020; 27: 1451-4. https://doi.org/10.1038/s41418-020-0530-3
  • 7. Kalchiem DO, Galvin JR, Burke AP, Atamas SP, Todd NW. interstitial lung disease and pulmonary fibrosis: A practical approach for general medicine physicians with focus on the medical history. J Clin Med 2018; 7(12): 476. https:// doi.org/10.3390/jcm7120476
  • 8. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity 2019; 50(4): 892-906. https://doi.org/10.1016/j.immuni.2019.03.021
  • 9. Ahmed S, Misra DP, Agarwal V. Interleukin-17 pathways in systemic sclerosis-associated fibrosis. Rheumatology international 2019; 39(7): 1135-43. https://doi.org/10.1007/ s00296-019-04317-5
  • 10. Kong Y, Han J, Wu X, Zeng H, Liu J, Zhang H. VEGF-D: A novel biomarker for detection of COVID-19 progression. Crit Care 2020; 24(1): 373. https://doi.org/10.1186/ s13054-020-03079-y
  • 11. Simler NR, Brenchley PE, Horrocks AW, Greaves SM, Hasleton PS, Egan JJ. Angiogenic cytokines in patients with idiopathic interstitial pneumonia. Thorax 2004; 59: 581-5. https://doi.org/10.1136/thx.2003.009860
  • 12. Ando M, Miyazaki E, Ito T, Hiroshige S, Nureki S, Ueno T, et al. significance of serum vascular endothelial growth factor level in patients with idiopathic pulmonary fibrosis. Lung 2010; 188: 247-52. https://doi.org/10.1007/s00408- 009-9223-x
  • 13. Cheuk W, Chan JK. IgG4-related sclerosing disease: A critical appraisal of an evolving clinicopathologic entity. Adv Anat Pathol 2010; 17(5): 303-32. https://doi. org/10.1097/PAP.0b013e3181ee63ce
  • 14. Keren GM, Shira BR, Ilan A, Guri KM. Immunglobulin G4 and releated desease, Isr Med Assoc J 2012; 14(10): 642-5.
  • 15. Martinez-Valle F, Orozco-Galvez O, Fernandez-Codina A. Update in ethiopathogeny, diagnosis and treatment of the IgG4 related disease. Med Clin (Barc) 2018; 151(1): 18-25.https://doi.org/10.1016/j.medcle.2018.05.005
  • 16. Stylianou E, Ueland T, Borchsenius F, Michelsen AE, Øvstebø R, Mollnes TE, et al. Specific allergen immunotherapy: Effect on IgE, IgG4 and chemokines in patients with allergic rhinitis Scand J Clin Lab Invest 2016; 76(2): 118-27. https://doi.org/10.3109/00365513.2015.11108 56
  • 17. Chen Y, Dong Y, Cai S, Ye C, Dong L. Clinical characteristics of IgG4-RD patients infected with COVID-19 in Hubei, China. Semin Arthritis Rheum 2020; 50(4): 559- 63. https://doi.org/10.1016/j.semarthrit.2020.04.015
  • 18. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 2009; 41: 1149- 60. https://doi.org/10.3758/BRM.41.4.1149
  • 19. Prokop M, van Everdingen W, van Rees Vellinga T, Ufford HQ, Stöger L, Beenen L, et al. CO-RADS: A categorical ct assessment scheme for patients suspected of having COVID-19 definition and evaluation. Radiology 2020; 296: E97-E104. https://doi.org/10.1148/radiol. 2020201473
  • 20. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and metaanalysis. Int J Infect Dis 2020; 94: 91-5. https://doi. org/10.1016/j.ijid.2020.03.017
  • 21. Li X, Xu S, Yu M, Pu K, Chen Z, Guo Q, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020; 146(1): 110-8. https://doi.org/10.1016/j.jaci.2020.04.006
  • 22. Chan TY, Miu KY, Tsui CK, Yee KS, Chan MH. A comparative study of clinical features and outcomes in young and older adults with severe acute respiratory syndrome. J Am Geriatr Soc 2004; 52(8): 1321-5. https://doi.org/10.1111/ j.1532-5415.2004.52362.x
  • 23. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395: 507-13. https://doi. org/10.1016/S0140-6736(20)30211-7
  • 24. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020; 8: 475-81. https://doi.org/10.1016/S2213-2600(20)30079- 5
  • 25. Kaner RJ, Crystal RG. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Mol Med 2001; 7: 240-6. https://doi. org/10.1007/BF03401843
  • 26. Collins BF, Raghu G. Antifibrotic therapy for fibrotic lung disease beyond idiopathic pulmonary fibrosis. Eur Respir Rev 2019; 28(154): 195022. https://doi. org/10.1183/16000617.5022-2019
  • 27. Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, et al. Serum cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J Infect Dis 2020; 222(5): 746‐54. https://doi.org/10.1093/infdis/jiaa363
  • 28. Yazihan N, Tanacan A, Erol SA, Anuk AT, Sinaci S, Biriken D, et al. Comparison of VEGF-A values between pregnant women with COVID-19 and healthy pregnancies and its association with composite adverse outcomes. J Med Virol 2021; 93(4): 2204-9. https://doi.org/10.1002/jmv.26631
  • 29. Meyer KC, Cardoni A, Xiang ZZ. Vascular endothelial growth factor in bronchoalveolar lavage from normal subjects and patients with diffuse parenchymal lung disease. J Lab Clin Med 2000; 135: 332-8. https://doi.org/10.1067/ mlc.2000.105618
  • 30. Murray LA, Habiel DM, Hohmann M, Camelo A, Shang H, Zhou Y, et al. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight 2017, 2(16): e92192. https://doi.org/10.1172/jci.insight.92192
  • 31. Zhou X, Loomis-King H, Gurczynski SJ, Wilke CA, Konopka KE, Ptaschinski C, et al. Bone marrow transplantation alters lung antigen-presenting cells to promote TH17 response and the development of pneumonitis and fibrosis following γherpesvirus infection. Mucosal Immunol 2016; 9: 610-20. https://doi.org/10.1038/mi.2015.85
  • 32. Candia P, Prattichizzo F, Garavelli S, Matarese G. T cells: Warriors of SARS-CoV-2 infection. Trends Immunol. 2021; 42(1): 18-30. https://doi.org/10.1016/j.it.2020.11.002
  • 33. Muyayalo KP, Huang DH, Zhao SJ, Xie T, Mor G, Liao AH. COVID-19 and Treg/Th17 imbalance: Potential relationship to pregnancy outcomes Ai-Hua Liao Am J Reprod Immunol 2020; 84: e13304. https://doi.org/10.1111/ aji.13304
  • 34. Altindiş M. A new marker for the diagnosis of rheumatoid arthritis: Cyclic citrullinated peptide antibodies (anti- CCP). Mikrobiyol Bul 2003; 37(4): 313-8.
  • 35. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARSCoV-2 in Wuhan, China. Allergy 2020; 75(7): 1730- 41. https://doi.org/10.1111/all.14238
  • 36. Das KM, Lee EY, Singh R, Enani MA, Dossari KA, Gorkom KV, et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging 2017; 27: 342-9. https://doi.org/10.4103/ijri.IJRI_469_16
  • 37. Ngai JC, Ko FW, Ng SS, To KW, Tong M, Hui DS. The longterm impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology 2010; 15: 543-50. https://doi. org/10.1111/j.1440-1843.2010.01720.x
Tüberküloz ve Toraks-Cover
  • ISSN: 0494-1373
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1951
  • Yayıncı: Tuba Yıldırım
Sayıdaki Diğer Makaleler

An appraisal of high-flow nasal cannula oxygen therapy in hypoxic pulmonary embolism patients

Habib Md Reazaul KARIM, Antonio M. ESQUINAS, Erdoğan DURAN

Response to “An appraisal of high-flow nasal cannula oxygen therapy in hypoxic pulmonary embolism patients”

Buğra KERGET, Elif YILMAZEL UÇAR, Leyla SAĞLAM, Alperen AKSAKAL

Hiatal hernisi olan ve olmayan idiyopatik pulmoner fibrozis hastalarında klinik sonuçların karşılaştırılması

Cesur SAMANCI, Ömer AYTEN, Oğuzhan OKUTAN, Tayfun ÇALIŞKAN, Kadir CANOĞLU, Gözde KALBARAN KISMET, Özlem TÜRKOĞLU

İleri evre küçük hücreli dışı akciğer kanserinde klinikopatolojik parametreler ile PD-L1 ekspresyon düzeyi arasındaki ilişki

Mustafa GÜRBÜZ, Elif Berna KÖKSOY, Koray CEYHAN, Adnan AYDINER, İzzet DOĞAN, Erman AKKUŞ, Ahmet DEMİRKAZIK, Güngör UTKAN, Pınar KUBİLAY TOLUNAY, Ender KALACI, Hilal ÖZAKINCI, Serpil DİZBAY SAK, Tolga BAĞLAN

Non-invaziv mekanik ventilasyon uygulanan hiperkapnik solunum yetmezliği hastalarında tam yüz ve oronazal maske etkinliğinin karşılaştırılması

Yusuf Taha GÜLLÜ, Tibel TUNA, Nurhan KÖKSAL, Birsen CİRİT EKİZ

KOAH hastalarında tekrarlanan pulmoner rehabilitasyon programı ilki kadar etkili midir?

İlknur NAZ, Hülya ŞAHİN

An another cause of COVID-19 related pulmonary fibrosis: The high oxygen supplement

Nuri TUTAR, Nur Aleyna YETKİN

Romatoid artritli bir hastada nodüler gölgeli eozinofilik pnömoni

Shinichiro OKAUCHI, Hiroaki SATOH

Astımlı hastalarda farklı bir bakış açısıyla ekokardiyografik değerlendirme

Yalçın BODUROĞLU, Duygu ZORLU, Arzu ERTÜRK

ABPA tanısında güncel tanısal kriterler yeterli midir?

Murat TÜRK, Sakine NAZİK BAHÇECİOĞLU, İnsu YILMAZ, Gülden PAÇACI ÇETİN