KOAH hastalarının progresyonlarını ne ölçüde tahmin edebiliriz?
Tıpta karar verme sürecinde tahmin modellerinin kullanılmasının, kronik hastalıklarda gelecekteki klinik sonuçların yüksek olasılıkla doğru tahmin edilmesinde önemli rolleri vardır. Bu amaçla, bu çalışmada kronik obstrüktif akciğer hastalığı (KOAH) olan hastaların gelecekteki progresyon riskini hesaplamak için bir prognostik indeks modeli geliştirilmiştir. Üç yıllık prospektif bir çalışmada KOAH’lı 75 hasta çalışmaya alındı. Monte Carlo Markov zinciri yöntemiyle Bayesian lojistik regresyon analizi kullanılarak KOAH progresyon riskini belirlemek için bir model geliştirildi. Bu modelde hastalığın progresyonunu değerlendirmede üç yıl boyunca birer yıllık periyotlar kullanıldı. Progresyon değerlendirmesinde esas değişkenler olarak üç yıl içinde bazal dispne indeksi (BDİ) skorunda kötüleşme, FEV1’de düşme ve atak sıklığı alındı. Yaş, sigara, beden kitle indeksi (BKİ), GOLD evresi, PaO2, PaCO2, IC, RV/TLC, DLCO zamansal olarak değişen kovaryatlar idi. Hastaların yaşı 57.1 ± 8.1 idi. BDİ atak sıklığı ile güçlü bir korelasyon gösterirken (p= 0.001), FEV1 kaybı ile korelasyonu bulunmadı. BKİ, dispne skorunda kötüleşmede belirleyici bir risk faktörüydü (p= 0.03). Atak sıklığını anlamlı olarak belirleyen bağımsız risk faktörleri: GOLD evresi (GOLD evre I ile karşılaştırıldığında Odds oranı GOLD evre II ve III için= 2.3 ve 4.0), hipoksemi (hafif olgularla karşılaştırıldığında orta ve ağır hipoksemi için= 2.1 ve 5.1) ve hiperinflasyon (OR= 1.6) idi. FEV1 düşüşünü belirleyen bağımsız risk faktörleri PaO2 (p= 0.026), IC (p= 0.02) ve RV/TLC (p= 0.03) idi. Geliştirilen model üç yıl önceki değerlere bakarak en son değerlendirilen BDİ, FEV1 ve atak sıklığı %95 güvenilirlik ve gerçeklikle tahmin etti (p< 0.001). Bu sonuçlara göre, bu model KOAH’lı hastaların şimdiki verilerine bakarak üç yıl sonraki durumlarını değerlendirmede %95 güvenli olarak değerlendirildi. Bir Bayesian tahmin modelini kullanarak, KOAH’lı hastaların şimdiki durumlarına bakarak gelecekteki prognozlarını yüksek olasılıkla tahmin etmek mümkün gibi görünmektedir.
How exactly can we predict the prognosis of COPD?
Predictive models play a pivotal role in the provision of accurate and useful probabilistic assessments of clinical outcomes in chronic diseases. This study was aimed to develop a dedicated prognostic index for quantifying progression risk in chronic obstructive pulmonary disease (COPD). Data were collected prospectively from 75 COPD patients during a three years period. A predictive model of progression risk of COPD was developed using Bayesian logistic regression analysis by Markov chain Monte Carlo method. One-year cycles were used for the disease progression in this model. Primary end points for progression were impairment in basal dyspne index (BDI) score, FEV1 decline, and exacerbation frequency in last three years. Time-varying covariates age, smoking, body mass index (BMI), severity of disease according to GOLD, PaO2, PaCO2, IC, RV/TLC, DLCO were used under the study. The mean age was 57.1 ± 8.1. BDI were strongly correlated with exacerbation frequency (p= 0.001) but not with FEV1 decline. BMI was found to be a predictor factor for impairment in BDI (p= 0.03). The following independent risk factors were significant to predict exacerbation frequency: GOLD staging (OR for GOLD I vs. II and III = 2.3 and 4.0), hypoxemia (OR for mild vs moderate and severe = 2.1 and 5.1) and hyperinflation (OR= 1.6). PaO2 (p= 0.026), IC (p= 0.02) and RV/TLC (p= 0.03) were found to be predictive factors for FEV1 decline. The model estimated BDI, lung function and exacerbation frequency at the last time point by testing initial data of three years with 95% reliability (p< 0.001). Accordingly, this model was evaluated as confident of 95% for assessing the future status of COPD patients. Using Bayesian predictive models, it was possible to develop a risk-stratification index that accurately predicted progression of COPD. This model can provide decision-making about future in COPD patients with high reliability looking clinical data of beginning.
___
- 1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: NHLBI/WHO (GOLD) Workshop report, NIH publication. US Department of Health and Human Service, 2003.
- 2. Tashkin DP. The role of patient-centered outcomes in the course of chronic obstructive pulmonary disease: How long-term studies contribute to our understanding. Am J Med 2006; 119: 63-72.
- 3. Mannino DM, Watt G, Hole D, et al. The natural history of chronic obstructive pulmonary disease. In: Rabe KF, Soriano JB (eds). Series The Global Burden of Chronic Obstructive Pulmonary Disease. Eur Respir J 2006; 27: 627-43.
- 4. Jones PW, Agusti AGN. Outcomes and markers in the assessment of chronic obstructive pulmonary disease. Eur Respir J 2006; 27: 822-32.
- 5. Gross NJ. Chronic obstructive pulmonary disease outcome measurements: What’s important? What’s useful? Proc Am Thorac Soc 2005; 2: 267-71.
- 6. Spiegelhalter DJ. Probabilistic prediction in patient management and clinical trials. Stat Med 1986; 5: 421-33.
- 7. Gössl C, Küchenhoff H. Bayesian analysis of logistic regression with an unknown change point and covariate measurement error. Statist Med 2001; 20: 3109-21.
- 8. Goldberg ARJ, Akhras KS, Chen C, et al. Review of the development, validation, and application of predictive instruments in interventional cardiology. Heart Dis 1999; 1: 138-48.
- 9. Marshall G, Shroyer AL, Grover FL, Hammermeister KE. Bayesian-logit model for risk assessment in coronary artery bypass grafting. Ann Thorac Surg 1994; 57: 1492-9.
- 10. Hedman J, Poussa T, Nieminen MM. A rapid dosimetric methacholine challenge in asthma diagnostics: A clinical study of 230 patients with dyspnoea, wheezing or a cough of unknown cause. Respir Med 1998; 92: 32-9.
- 11. Borg S, Ericsson A, Wedzicha J, et al. A computer simulation model of the natural history and economic impact of chronic obstructive pulmonary disease. Value in Health 2004; 7: 153-67.
- 12. American Thoracic Society. Dyspnea, mechanisms, assesment, and management: A consensus statement. Am J Respir Crit Care Med 1999; 159: 321-40.
- 13. Rodriguez RR. Toward a consensus definition for COPD exacerbations. Chest 2000; 117: 398-410.
- 14. Quanjer PH, Tammeling GJ, Cotes JE, et al. Lung volumes and forced ventilatory flows. Report of the Working Party on Standardisation of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J 1993; 16: 5-40.
- 15. Cotes JE, Chinn DJ, Quanjer PH, et al. Standardisation of the measurement of transfer factor (diffusing capacity). Report of the Working Party on Standardisation of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J 1993; 16: 41-52.
- 16. Celli BR, Cote CG, Marin JM, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004; 350: 1005-12.
- 17. Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002; 57: 847-52.
- 18. Seemungal TA, Donaldson GC, Bhowmik A, et al. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000; 161: 1608-13.
- 19. Rabe K. Outcome measures in COPD. Prim Care Respir J 2004; 13: 177-8.
- 20. Ramsey SD, Hobbs FDR. Chronic obstructive pulmonary disease, risk factors, and outcome trials comparisons with cardiovascular disease. Proc Am Thorac Soc 2006; 3: 635-40.
- 21. Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest 2002; 121: 1434-40.
- 22. Anthonisen NR, Wright EC, Hodgkin JE. Prognosis in chronic obstructive pulmonary disease. Am Rev Respir Dis 1986; 133: 14-20.
- 23. Steinmetz J, Rasmussen LS, Nielsen SL. Long-term prognosis for patients with COPD treated in the prehospital setting: Is it influenced by hospital admission? Chest 2006; 130: 676-80.
- 24. Yildiz OA, Onen ZP, Sen E, et al. Predictors of long-term survival in patients with chronic obstructive pulmonary disease. Saudi Med J 2006; 27: 1866-72.
- 25. Gunen H, Hacievliyagil S, Kosar F, et al. Factors affecting survival of hospitalised patients with COPD. Eur Respir J 2005; 26: 234- 41.
- 26. Çilli A, Uslu A, Öğüş C, Özdemir T. KOAH’da komorbiditenin prognoza etkisi. Tuberk Toraks 2004; 52: 52-5.
- 27. Chena Y, Stewartb P, Dalesc R, et al. In a retrospective study of chronic obstructive pulmonary disease inpatients, respiratory comorbidities were significantly associated with prognosis. J Clin Epidemiol 2005; 58: 1199-205.
- 28. Wang D, Zhang W, Bakhai A. Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. Stat Med 2004; 23: 3451-67.