Kistik fibrozisli hastalarda anaerop bakterilerin rolünün araştırılması
Giriş: Kistik fibrozis (KF) hastalarının en önemli mortalite nedeni akut alevlenme ve iyileşme dönemlerinin birbirini izlediği tekrarlayan akciğer hastalığıdır.Son yıllarda ileri teknoloji ile gerçekleştirilen kültür dışı yöntemlere dayananmetagenomik çalışmalar, KF hastalarının akciğer ortamının mikrobiyolojikaçıdan karmaşık dinamiğini göstermiş, anaerop bakterilerin artan öneminedikkat çekmiştir. Gerek moleküler temelli gerekse anaerop kültür yöntemleriile yapılan çalışmalar, KF hastalarının akciğer ortamında aerop ve fakültatifanaerop bakteriler kadar ya da daha fazla olmak üzere anaerop bakterilerinde bulunduğunu göstermiştir. Ancak literatürde bu konuda yapılmış çalışmalarsınırlıdır.Materyal ve Metod: Hacettepe Üniversitesi Tıp Fakültesi, Çocuk GöğüsHastalıkları polikliniğine başvuran ve izlemde olan KF'li hastaların balgamörneklerinden kantitatif kültür yöntemi ile anaerop bakteri varlığının öneminiirdelemek ve üreyen anaerop bakterilerin antibiyotik duyarlılık durumlarınıaraştırarak tedaviye katkı sağlamak amacıyla izole edilen bakteriler klasik veyarı otomatize yöntemlerle tanımlanmıştır. Anaerop bakterilerin duyarlılık testleri için referans yöntem olan agar dilüsyon yöntemi kullanılmıştır.Bulgular: Çalışmaya alınan 43 hastanın 35 (%81.4)’inde, toplam 77 zorunluanaerop bakteri izole edilmiştir. Toplanan balgam örneklerinde zorunlu anaerop/fakültatif bakterilerin toplam sayısı (ortalama 16 x 106), yalnızca aerop/fakültatif bakterilerin toplam sayısından (ortalama 14.1 x 106) daha fazlabulunmuştur. Anaerop kültür yapılmadığı durumda izolatların sadece %63.5’isaptanabilmektedir. Polimorfonükleer lökosit orta ve bol olarak gözlenenörneklerden ise çok sayıda zorunlu anaerop bakteri izole edilmiştir (p= 0.046). Yaşın anaerop bakteri izolasyonuna etkisi irdelendiğinde, 18 yaşından büyük hastalarda, anaerop bakteri izolasyonununbelirgin olarak arttığı görülmüştür. İzole edilen 77 zorunlu anaerop bakteriden 72’sinin ampisilin, sulbaktam-ampisilin, piperasilin,piperasilin-tazobaktam, moksifloksasin, metronidazol, imipenem ve klindamisine karşı duyarlılıkları test edildiğinde, en etkisiz antibiyotiğin klindamisin olduğu, izolatların hiçbirisinde imipenem direnci görülmediği saptanmıştır.Sonuç: Bu çalışma ülkemizde KF hastalarında anaerop bakterilerin rolü ve önemini gösteren ilk çalışmadır. KF hastalarından izoleedilen anaerop bakterilerde saptanan direnç oranlarının yüksekliği kaygı vericidir. Bu nedenle bu hastaların takibinde aralıklı olarakanaerop kültür yapılması ve direnç oranlarının takip edilmesi tedavide yol gösterici olacaktır.
Investigation of role of anaerobic bacteria in cystic fibrosis patients
Introduction: Repetitive pulmonary infections are the main cause of morbidity and mortality in cystic fibrosis (CF) patients. In recent years, non-culture dependent metagenomic studies showed complex dynamics of the pulmonary environment of CF patients and pointed out the importance of anaerobic bacteria. Molecular-based studies indicate that anaerobic bacteria can be found more than aerobic or facultative anaerobic bacteria in CF lung environment. However, limited number of studies are far away to clarify the importance of anaerobic bacteria in CF pulmonary disease. Materials and Methods: The aim of this study was to evaluate the role of anaerobic bacteria in CF patients admitted to Hacettepe University, Pediatric Respiratory Diseases Department, by using quantitative culture method for both aerobic and anaerobic bacteria. Anaerobic bacteria were identified by conventional and semi-automated methods. Antibiotic susceptibilities were performed by agar dilution method. Results: Seventy-seven anaerobic bacteria were isolated from 35 (81.4%) of 43 patients. The total count of anaerobes and facultative bacteria (mean 16 x 106), was higher than aerobes and facultative bacteria (mean 14.1 x 106). If anaerobe culture were not performed merely 63.65% of all species could be obtained. In patients whose samples yielded intermediate or high numbers of PMNLs, significantly more obligate anaerobic bacteria were isolated (p= 0.046). Patients older than 18 years were colonized with higher number of anaerobic bacteria. Susceptibilities of 72 isolates out of 77, against ampicillin, sulbactam-ampicillin, piperacillin, piperacillin-tazobactam, moxifloxacin, metronidazole, imipenem, and clindamycin were also evaluated. Clindamycin was found to be the least effective antibiotic among all. None of the isolates was resistant to imipenem. Conclusion: This is the first study to show the role and importance of anaerobic bacteria in CF patients in our country. The resistance rates in anaerobic bacteria isolated from CF patients is concerning. Therefore, intermittent anaerobic culture and follow-up of resistance rates will be helpful in the follow-up of these patients.
___
- 1. Elborn JS. Cystic fibrosis. Lancet 2016;388(10059):2519- 31.
- 2. Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, et al. Airway microbiota and pathogen abundance in agestratified cystic fibrosis patients. PLoS One 2010;5(6):e11044.
- 3. Lipuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 2010;23:299-323.
- 4. Bittar F, Rolain JM. Detection and accurate identification of new or emerging bacteria in cystic fibrosis patients. Clin Microbiol Infect 2010;16:809-20.
- 5. Sherrard LJ, Bell SC, Tunney MM. The role of anaerobic bacteria in the cystic fibrosis airway. Curr Opin Pulm Med 2016;22:637-43.
- 6. Sibley CD, Grinwis ME, Field TR, Eshaghurshan CS, Faria MM, Dowd SE, et al. Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS One 2011;6:e22702.
- 7. Rabin HR, Surette MG. The cystic fibrosis airway microbiome. Curr Opin Pulm Med 2012;18:622-7.
- 8. Kolpen M, Hansen CR, Bjarnsholt T, Moser C, Christensen LD, van Gennip M, et al. Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax 2010;65:57-62.
- 9. Duan K, Dammel C, Stein J, Rabin H, Surette MG. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 2003;50:1477-91.
- 10. Field TR, Sibley CD, Parkins MD, Rabin HR, Surette MG. The genus Prevotella in cystic fibrosis airways. Anaerobe 2010;16:337-44.
- 11. Sherrard LJ, McGrath SJ, McIlreavey L, Hatch J, Wolfgang MC, Muhlebach MS, et al. Production of extended-spectrum beta-lactamases and the potential indirect pathogenic role of Prevotella isolates from the cystic fibrosis respiratory microbiota. Int J Antimicrob Agents 2016;47:140-5.
- 12. Pustelny C, Komor U, Pawar V, Lorenz A, Bielecka A, Moter A, et al. Contribution of Veillonella parvula to Pseudomonas aeruginosa-mediated pathogenicity in a murine tumor model system. Infect Immun 2015;83:417-29.
- 13. Methods for antimicrobial susceptibility testing of anaerobic bacteria; Approved standard M11-A7 [press release]. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute 2007.
- 14. Zemanick ET, Harris JK, Wagner BD, Robertson CE, Sagel SD, Stevens MJ, et al. Inflammation and airway microbiota during cystic fibrosis pulmonary exacerbations. PLoS One 2013;8:e62917.
- 15. Boutin S, Dalpke AH. Acquisition and adaptation of the airway microbiota in the early life of cystic fibrosis patients. Mol Cell Pediatr 2017;4:1.
- 16. Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD. characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16s ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2004;42:5176-83.
- 17. Tunney MM, Field TR, Moriarty TF, Patrick S, Doering G, Muhlebach MS, et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 2008;177:995-1001.
- 18. Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Kehagia V, et al. Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. J Clin Microbiol 2006;44:2601-4.
- 19. Mirkovic B, Murray MA, Lavelle GM, Molloy K, Azim AA, Gunaratnam C, et al. The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway. Am J Respir Crit Care Med 2015;192:1314-24.
- 20. Ulrich M, Beer I, Braitmaier P, Dierkes M, Kummer F, Krismer B, et al. Relative contribution of Prevotella intermedia and Pseudomonas aeruginosa to lung pathology in airways of patients with cystic fibrosis. Thorax 2010;65:978-84.
- 21. Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA 2012;109:5809-14.
- 22. Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, Tunney MM, et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One 2012;7:e45001.
- 23. Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA, et al. Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol 2010;12:1293-303.
- 24. Zemanick ET, Wagner BD, Harris JK, Wagener JS, Accurso FJ, Sagel SD. Pulmonary exacerbations in cystic fibrosis with negative bacterial cultures. Pediatr Pulmonol 2010;45:569-77.
- 25. Worlitzsch D, Rintelen C, Bohm K, Wollschlager B, Merkel N, Borneff-Lipp M, et al. Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients. Clin Microbiol Infect 2009;15:454-60.
- 26. Marchand-Austin A, Rawte P, Toye B, Jamieson FB, Farrell DJ, Patel SN. Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010-2011. Anaerobe 2014;28:120-5.
- 27. Novak A, Rubic Z, Dogas V, Goic-Barisic I, Radic M, Tonkic M. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013. Anaerobe 2015;31:31-6.
- 28. Wybo I, Van den Bossche D, Soetens O, Vekens E, Vandoorslaer K, Claeys G, et al. Fourth Belgian multicentre survey of antibiotic susceptibility of anaerobic bacteria. J Antimicrob Chemother 2014;69:155-61.
- 29. Hastey CJ, Boyd H, Schuetz AN, Anderson K, Citron DM, Dzink-Fox J, et al. Changes in the antibiotic susceptibility of anaerobic bacteria from 2007-2009 to 2010-2012 based on the CLSI methodology. Anaerobe 2016;42:27- 30.
- 30. Lee Y, Park YJ, Kim MN, Uh Y, Kim MS, Lee K. Multicenter study of antimicrobial susceptibility of anaerobic bacteria in Korea in 2012. Ann Lab Med 2015;35:479-86.
- 31. Sherrard LJ, Graham KA, McGrath SJ, McIlreavey L, Hatch J, Muhlebach MS, et al. Antibiotic resistance in Prevotella species isolated from patients with cystic fibrosis. J Antimicrob Chemother 2013;68:2369-74.
- 32. Veloo AC, Seme K, Raangs E, Rurenga P, Singadji Z, Wekema-Mulder G, et al. Antibiotic susceptibility profiles of oral pathogens. Int J Antimicrob Agents 2012;40:450-4.
- 33. Byun JH, Kim M, Lee Y, Lee K, Chong Y. Antimicrobial susceptibility patterns of anaerobic bacterial clinical isolates from 2014 to 2016, including recently named or renamed species. Ann Lab Med 2019;39:190-9.
- 34. Boyanova L, Kolarov R, Mitov I. Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe 2015;31:4-10.
- 35. Huang YJ, LiPuma JJ. The microbiome in cystic fibrosis. Clin Chest Med 2016;37:59-67.
- 36. Lynch SV, Bruce KD. The cystic fibrosis airway microbiome. Cold Spring Harb Perspect Med 2013;3(3):a009738.