THE PREFERENCE PRIORITY OF Bacillus subtilis IN UPTAKING FREE DNA DURING THE NATURAL TRANSFORMATION

Genetik materyal nesiller arasında genellikle eşeyli veya eşeysiz üreme yoluyla dikey olarak aktarılsa da, akraba olmayan organizmaların bazı kromozom ve gen kısımlarındaki büyük benzerlikler, başka bir aktarım yolu olabileceğini gösterir. Farklı organizmalar arasında genetik bilginin hareketliliği olarak bilinen yatay gen transferi (YGT), alıcı konak üzerinde ani veya gecikmeli etkilere sahiptir. YGT'nin en dikkate değer mekanizmalarından biri, hücrelerin hücre dışı ortamdan serbest DNA aldığı ve homolog rekombinasyon yoluyla kromozomlarına dâhil ettiği bir süreç olan doğal transformasyondur (DT). DT, direnç genlerinin yayılmasını teşvik edebildiği için birçok bakteri türünde yaygın olarak korunur. Birçok organizmanın YGT gerçekleştirdiği bilinmesine rağmen, organizmaların yatay olarak aktarılan genetik materyale nasıl karar verdiği hakkındaki bilgi sınırlıdır.Burada, DT yeteneğine sahip Bacillus subtilis'in belirli stres koşulları altında sunulan farklı gen kaynakları arasından seçim önceliğini araştırdım. Bunu test etmek için, aynı uzunlukta fakat farklı dizi içeriğine sahip iki DNA örneği (E ve C), farklı stres ortamları (BK, BC, BE ve BCE) altında B. subtilis'e sunuldu. Hipotez, DT sonrasında seçici plakalar (pE, pC ve pCE) üzerinde oluşan kolonilerin analiz sonuçlarına göre değerlendirildi.Elde edilen veriler, DT sırasında bakterilerin bir uyarıcıya bağlı olarak tercih önceliğine sahip olduğuna dair güçlü bir pozitif korelasyon sunmuştur. Bakterilerin belirli bir ortamda yararlı DNA parçalarını alma eğilimi gösterdiği söylenebilir, örneğin, dönüştürme ortamı bir indükleyici olarak erythromycin (Eryt) içerdiğinde kolonilerin çoğunluğu pC ve pCE yerine pE plakaları üzerinde büyümüştür. Veriler, bakterilerin DT sırasında serbest DNA'ları almak için bir tercih önceliğine sahip olduğu iddiasıyla önemli ölçüde örtüşse de, verileri güçlü bir şekilde desteklemek ve fenomeni doğru bir şekilde anlamak için daha fazla araştırmaya ihtiyaç vardır.

THE PREFERENCE PRIORITY OF Bacillus subtilis IN UPTAKING FREE DNA DURING THE NATURAL TRANSFORMATION

Although genetic material is vertically transferred between generations via sexual or asexual reproduction, similarities in some chromosome and gene parts of unrelated organisms provide important clues for another way of transfer. The mobility of genetic information among different organisms, known as horizontal gene transfer (HGT) has immediate or delayed effects on the recipient host. One of the most notable mechanisms of HGT is natural transformation (NT), a process in which cells take free DNA from the extracellular environment and incorporate it into their chromosomes by homologous recombination. NT is widely conserved in many bacterial species as it can promote to spread of resistance genes. Although it is known that many organisms rely on HGT, there is limited information about how they decide which particular genetic material to horizontally transfer. Here, I have investigated the preference priority among different gene sources presented under certain stress conditions for Bacillus subtilis possessing NT ability. To test this, two DNA specimens (E and C) with different sequence contents of the same length were presented to B. subtilis under different stress environments (BK, BC, BE and BCE). The hypothesis was evaluated according to the analysis of the results of colonial formations on selective plates (pE, pC and pCE). The obtained data presented a strong positive correlation that the bacteria have preference priority during NT depending on a stimulator. The tendency of the bacteria to uptake useful DNA fragments in a specific environment can be suggested. For instance, the majority of colonies grow on pE plates rather than the pC and pCE when the transformation media includes erythromycin (Eryt) as an inducer. Although the data significantly overlaps with the idea claiming that the bacteria have a preference priority to uptake free DNAs during NT, further investigations are needed to support the present data and for better understanding of the phenomenon. 

___

  • 1. Adato, O., Ninyo, N., Gophna, U. & Snir, S. 2015. Detecting horizontal gene transfer between closely related taxa. PLOS Computational Biology, 11(10): e1004408.
  • 2. Arnold, B.J., Huang, I.T. & Hanage, W.P. 2021. Horizontal gene transfer and adaptive evolution in bacteria. Nature Reviews Microbiology 20:206-218.
  • 3. Baquero, F., Coque, T.M., Martínez, J.L., Aracil-Gisbert, S. & Lanza, V.F. 2019. Gene transmission in the one health microbiosphere and the channels of antimicrobial resistance. Frontiers in Microbiology, 10: 2892.
  • 4. Blokesch, M. 2016. Natural competence for transformation. Current Biology, 26(21): R1126-R1130.
  • 5. Blokesch, M. 2017. In and out-contribution of natural transformation to the shuffling of large genomic regions. Current Opinion in Microbiology, 38: 22-29.
  • 6. Bordelet, H. & Dubrana, K. 2018. Keep moving and stay in a good shape to find your homologous recombination partner. Current Genetics, 65(1): 29-39.
  • 7. Brown, B.P. & Wernegreen, J.J. 2019. Genomic erosion and extensive horizontal gene transfer in gut-associated Acetobacteraceae. BMC Genomics, 20(1): 1-15.
  • 8. Burmeister, A.R. 2015. Horizontal Gene Transfer. Evolution, Medicine, and Public Health, 2015(1): 193.
  • 9. Campos, M., Capilla, R., Naya, F., Futami, R., Coque, T., Moya, A., Fernandez-Lanza V., Cantón R., Sempere J.M,, Llorens C. & Baquero, F. 2019. Simulating multilevel dynamics of antimicrobial resistance in a membrane computing model. mBio, 10(1): e02460-18.
  • 10. Crisp, A., Boschetti, C., Perry, M., Tunnacliffe, A. & Micklem, G. 2015. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biology, 16(1): 1-13.
  • 11. Dauros Singorenko, P., Chang, V., Whitcombe, A., Simonov, D., Hong, J., Phillips, A., Swift, S. & Blenkiron, C. 2017. Isolation of membrane vesicles from prokaryotes: a technical and biological comparison reveals heterogeneity. Journal of Extracellular Vesicles, 6(1): 1324731.
  • 12. Di Giacomo, S., Toussaint, F., Ledesma-García, L., Knoops, A., Vande Capelle, F., Fremaux, C., Horvath, P., Ladrière, J-M., Ait-Abderrahim, H., Hols, P. & Mignolet, J. 2022. Expanding natural transformation to improve beneficial lactic acid bacteria. FEMS Microbiology Reviews, 46(4): 1-15.
  • 13. Dubnau, D. & Davidoff-Abelson, R. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis: I. Formation and properties of the donor-recipient complex. Journal of Molecular Biology, 56(2): 209-221.
  • 14. Fox, M.S. & Allen, M.K. 1964. On the mechanism of deoxyribonucleate integration in pneumococcal transformation. Proceedings of the National Academy of Sciences of the United States of America, 52(2): 412.
  • 15. Gabor, M. & Hotchkiss, R. D. 1966. Manifestation of linear organization in molecules of pneumococcal transforming DNA. Proceedings of the National Academy of Sciences of the United States of America, 56(5): 1441.
  • 16. Garcia-Vallve, S. 2003. HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Research, 31(1): 187-189.
  • 17. Garcia-Vallve, S., Romeu, A. & Palau, J. 2000. Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Research, 10(11): 1719-1725.
  • 18. Griffith, F. 1928. The Significance of Pneumococcal types. The Journal of Hygiene, 27(2): 113-159.
  • 19. Hall, J.P.J., Brockhurst, M A. & Harrison, E. 2017. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philosophical Transactions of the Royal Society B: Biological Sciences, 372: 37220160424.
  • 20. Härtl, B., Wehrl, W., Wiegert, T., Homuth, G. & Schumann, W. 2001. Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes. Journal of Bacteriology, 183(8): 2696.
  • 21. Hong, J., Dauros-Singorenko, P., Whitcombe, A., Payne, L., Blenkiron, C., Phillips, A. & Swift, S. 2019. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions. Journal of Extracellular Vesicles, 8(1): 1632099.
  • 22. Husnik, F. & McCutcheon, J.P. 2016. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 113(37): E5416-E5424.
  • 23. Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J.P. 2014. Bacterial transformation: distribution, shared mechanisms and divergent control. Nature Reviews Microbiology, 12(3): 181-196.
  • 24. Kidane, D. & Graumann, P.L. 2005. Intracellular protein and DNA dynamics in competent Bacillus subtilis cells. Cell, 122(1): 73-84.
  • 25. Kuffner, M., Kopacka, M., Domingues, I., Steinwider, S., Nielsen, J. & Fuchs, K. 2015. Impact of mosaic genes on the risk assessment of GMOs. Federal Ministry of Health, 1-268.
  • 26. Lacks, S. 1962. Molecular fate of DNA in genetic transformation of Pneumococcus. Journal of Molecular Biology, 5(1): 119-131.
  • 27. Leclerc, Q.J., Lindsay, J.A. & Knight, G.M. 2019. Mathematical modelling to study the horizontal transfer of antimicrobial resistance genes in bacteria: current state of the field and recommendations. Journal of the Royal Society İnterface, 16: 20190260.
  • 28. Lin, J.T., Connelly, M.B., Amolo, C., Otani, S. & Yaver, D.S. 2005. Global transcriptional response of Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein synthesis. Antimicrobial Agents and Chemotherapy, 49(5): 1915.
  • 29. Liu, Y., Kyle, S. & Straight, P.D. 2018. Antibiotic stimulation of a Bacillus subtilis migratory response. MSphere, 3(1): e00586-17.
  • 30. Lorenz, M.G. & Wackernagel, W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiological Reviews, 58(3): 563-602.
  • 31. Luo, Y. & Wasserfallen, A. 2001. Gene transfer systems and their applications in Archaea. Systematic and Applied Microbiology, 24(1): 15-25. 32. Nielsen, K.M. & van Elsas, J.D. 2019. Horizontal gene transfer and microevolution in soil. Pp. 77-105. In: van Elsas, J.D., Trevors, J.T., Jansson, J.K. & Nannipieri, P. (eds). Modern soil microbiology, 2nd Edition, CRC Press, Boca Raton, 672 pp.
  • 33. Marie, L., Rapisarda, C., Morales, V., Bergé, M., Perry, T., Soulet, A. L., Fichant, G., Martin, B., Noirot, P., Le Cam, E., Polard, P. & Claverys, J-P. 2017. Bacterial RadA is a DnaB-type helicase interacting with RecA to promote bidirectional D-loop extension. Nature Communications 8(1): 1-14.
  • 34. Mejean, V. & Claverys, J. P. 1984. Use of a cloned DNA fragment to analyze the fate of donor DNA in transformation of Streptococcus pneumoniae. Journal of Bacteriology, 158(3): 1175-1178.
  • 35. Moradigaravand, D. & Engelstädter, J. 2014. The impact of natural transformation on adaptation in spatially structured bacterial populations. BMC Evolutionary Biology, 14(1): 1-9.
  • 36. Mortier-Barrière, İ., Velten, M., Dupaigne, P., Mirouze, N., Piétrement, O., McGovern, S., Fichant, G., Martin, B., Noirot, P., Le Cam, E., Polard, P. & Claverys, J. P. 2007. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell, 130(5): 824-836.
  • 37. Nero, T.M., Dalia, T.N., Wang, J.C.Y., Kysela, D.T., Bochman, M.L. & Dalia, A.B. 2018. ComM is a hexameric helicase that promotes branch migration during natural transformation in diverse Gram-negative species. Nucleic Acids Research, 46(12): 6099-6111.
  • 38. Piechowska, M. & Fox, M. S. 1971. Fate of transforming deoxyribonucleate in Bacillus subtilis. Journal of Bacteriology, 108(2): 680-689.
  • 39. Radeck, J., Kraft, K., Bartels, J., Cikovic, T., Dürr, F., Emenegger, J., Kelterborn, S., Sauer, C., Fritz, G., Gebhard, S. & Mascher, T. 2013. The Bacillus BioBrick Box: Generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. Journal of Biological Engineering, 7(1): 29.
  • 40. Rancurel, C., Legrand, L. & Danchin, E.G.J. 2017. Alienness: Rapid detection of candidate horizontal gene transfers across the tree of life. Genes, 8(10): 248.
  • 41. Salzberg, S.L. 2017. Horizontal gene transfer is not a hallmark of the human genome. Genome Biology, 18(1): 1-5.
  • 42. Sambrook, J. & Russell, D.W. 2006. The inoue method for preparation and transformation of competent E. coli : “Ultra-Competent” cells. Cold Spring Harbor Protocols, 2006(1)::pdb.prot3944. DOI: 10.1101/pdb.prot3944.
  • 43. Soufo, H.J.D. 2016. A novel cell type enables B. Subtilis to escape from unsuccessful sporulation in minimal medium. Frontiers in Microbiology, 7: 1810.
  • 44. Takada, H., Mandell, Z.F., Yakhnin, H., Glazyrina, A., Chiba, S., Kurata, T., Wu, K.J.Y., Tresco, B.I.C, Myers, A.G., Aktinson, G.C., Babitzke, P. & Hauryliuk, V. 2022. Expression of Bacillus subtilis ABCF antibiotic resistance factor VmlR is regulated by RNA polymerase pausing, transcription attenuation, translation attenuation and (p)ppGpp. Nucleic Acids Research, 50(11): 6174-6189.
  • 45. Taubman, S.B., Jones, N.R., Young, F.E. & Corcoran, J.W. 1966. Sensitivity and resistance to erythromycin in Bacillus subtilis 168: The ribosomal binding of erythromycin and chloramphenicol. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 123(2): 438-440.
  • 46. Tenlen, J.R., Smith, F.W., Wang, J.R., Kiera, A., Nishimura, E.O., Tintori, S.C., Li, Q., Jones, C.D., Yandell, M., Messina, D.N., Glasscock, J. & Osborne, E. 2016. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proceedings of the National Academy of Sciences, 113(36): E5364-E5364.
  • 47. Vowinckel, J., Hartl, J., Marx, H., Kerick, M., Runggatscher, K., Keller, M.A., Mülleder, M., Day, J., Weber, M., Rinnerthaler, M., Yu, J.S.L., Aulakh, S.K., Lehmann, A., Mattanovich, D., Timmermann, B., Zhang, N., Dunn, C.D., MacRae, J.I, Breitenbach, M. & Ralser, M. 2021. The metabolic growth limitations of petite cells lacking the mitochondrial genome. Nature Metabolism, 3(11): 1521.
  • 48. Yang, J., Barra, J.T., Fung, D.K. & Wang, J.D. 2022. Bacillus subtilis produces (p)ppGpp in response to the bacteriostatic antibiotic chloramphenicol to prevent its potential bactericidal effect. MLife, 1(2): 101-113.
Trakya University Journal of Natural Sciences-Cover
  • ISSN: 2147-0294
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2000
  • Yayıncı: Trakya Üniversitesi
Sayıdaki Diğer Makaleler

α-AMYLASE, α-GLUCOSIDASE AND LIPASE INHIBITORY PROPERTIES AND PHYTOCHEMICAL ANALYSIS OF ENDEMIC PLANT Jurinea brevicaulis Boiss.

Sıla SENER, Şeyda KANBOLAT, Nevin ULAŞ ÇOLAK, Merve BADEM, Rezzan ALİYAZICIOĞLU, Ufuk ÖZGEN, Ali KANDEMİR

DESIGN AND GENERATION OF A RECOMBINANT GAMMAHERPESVIRUS ENCODING shRNA FROM A NATIVE VIRAL tRNA PROMOTER

Mehmet KARA, Scott TİBBETTS

THE IMPORTANCE OF trnL/trnF IGS REGION IN THE TAXONOMY OF THE GENUS Potentilla L.

Aykut YILMAZ

SCREENING OF MICROFUNGI ISOLATED FROM ACIGÖL, TÜRKİYE FOR HYDROLYTIC ENZYMES, BIOACTIVE METABOLITES AND SILVER NANOPARTICLE PRODUCTION

Emine İRDEM, Semra İLHAN, Ercan ÖZBİÇEN, Lira USAKBEK KYZY, Gamze TUNCA, Esma OCAK, Niyazi Can ZORLUER, Uğur ÇİĞDEM, Fatma AYVA, Rasime DEMİREL

CHARACTERIZATION OF cox3 AND rnl GENES ENCODED IN MITOCHONDRIA OF Fusarium graminearum Schwabe

Aylin GAZDAĞLI, Gülruh ALBAYRAK

INVESTIGATION OF THE PROTECTIVE EFFECTS OF POMEGRANATE (Punica granatum L.) PEEL EXTRACT ON LIPOPOLYSACCHARIDE-INDUCED UVEITIS IN RATS

Tuğba Nurcan YÜKSEL, Muhammed YAYLA, Duygu KÖSE, Rüstem Anıl UĞAN, Erdem TOKTAY, Pinar AKSU KILIÇLE, Elif ÇADIRCI, Zekai HALICI

PAKISTAN FLOODS: AN INSIGHT INTO AGRICULTURE AND FOOD SUPPLY

Nida SOHAİL, Yousra SARFARAZ, Ammara RAFİQUE

THE PREFERENCE PRIORITY OF Bacillus subtilis IN UPTAKING FREE DNA DURING THE NATURAL TRANSFORMATION

Musa TARTIK

COMPOSITION ANALYSIS OF E-LIQUIDS AND THEIR EFFECTS ON HEALTHY LIVER AND PHARYNGEAL CARCINOMA CELL LINES

Caner GEYİK, Z. Pinar GUMUS, Gorkem YARARBAS