MICROWAVE IRRADIATION SYSTEM FOR A RAPID SYNTHESIS OF NON-TOXIC METALLIC COPPER NANOPARTICLES FROM GREEN TEA

Bu makale, yeşil çay (Camellia sinensis (L.) Kuntze) ekstraktsiyonu kullanılarak oksitlenmemiş metalik bakır nanopartiküllerinin (CuNPs) mikrodalga destekli yeşil sentezinin hızlı bir protokolünü sunmaktadır. Başarılı biyosentezi tamamladıkten sonra, bakır nanopartiküllerin varlığını doğrulamak ve morfolojilerini ortaya çıkarmak için UV–vis absorpsiyon spektroskopi, Fourier Dönüşümlü Kızıl Ötesi Spektrometresi (FTIR), Enerji dağıtıcı X-ışını analizi (EDX) ile ilişkili Taramalı elektron mikroskobu (SEM), X-ışını Kırınımı (XRD) ve Zeta analiz gibi karakterizasyon teknikleri uygulanılmıştır. Üretilmiş CuNP’lerin UV-vis spektrumu, 570 nm’de karakteristik maksimum absorbansını göstermiştir. Sentezlenen CuNP’lerin, ortalama 45,30 nm büyüklüğünde yuvarlaktan küre şeklinde, birkaç ay boyunca herhangi bir agregasyon olmadan mükemmel stabilite sergilediği bulunmuştur. EDX grafiği, karbon ve oksijenın sırasıyla %17,17 ve %4,87’lik oranlarla birlikte en yüksek miktarda bakır atomunu (%77,96) doğrulanmıştır. Son olarak, sağlıklı fare fibroblast hücreleri (L929 hücre çizgisi) üzerindeki biyosentezlenmiş bu CuNP’lerin non-toksik özelliği doğrulanmıştır ve bu durum, bunların biyolojik araştırmaların yanı sıra geniş kapsamlı uygulamalarda potansiyellerini de göstermektedir.

MICROWAVE IRRADIATION SYSTEM FOR A RAPID SYNTHESIS OF NON-TOXIC METALLIC COPPER NANOPARTICLES FROM GREEN TEA

This paper presents a rapid protocol of microwave-assisted green synthesis of non-oxidized metallic copper nanoparticles (CuNPs) using green tea (Camellia sinensis (L.) Kuntze) extract. Following the successful biosynthesis, characterization techniques such as UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) associated with Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD) and Zeta analysis were employed to confirm the presence of metallic CuNPs and reveal their morphology. UV–vis spectrum of fabricated CuNPs indicated its characteristic maximum absorbance at 570 nm. Synthesized CuNPs were found to be round to globular in shape, with average size of 45.30 nm, and showed excellent stability without any aggregation for several months. EDX graph confirmed the highest amount of copper atoms (77.96%) along with carbon and oxygen with the percentage of 17.17% and 4.87%, respectively. The non-toxic nature of the phytosynthesized CuNPs was further established by using healthy mouse fibroblast L929 cell line, which showed their potentiality for biological research and many other applications.

___

  • 1. Annamalai, N., Thavasi R., Vijayalakshmi S. & Balasubramanian, T. 2011. A novel thermostable and halostable carboxymethylcellulase from marine bacterium Bacillus licheniformis AU0. World Journal of Microbiology and Biotechnology, 27: 2111-2115. https://doi.org/10.1007/s11274-011-0674-x
  • 2. Aziz, S.B. 2017. Morphological and optical characteristics of chitosan (1-x): Cuox (4 ≤ x ≤ 12) based polymer nanocomposites: optical dielectric loss as an alternative method for Tauc’s model. Nanomaterials (Basel), 7(12): 444. https://doi.org/10.3390/nano7120444
  • 3. Cheng, X., Zhang, X., Yin, H., Wang, A. & Xu, Y. 2006. Modifier effects on chemical reduction synthesis of nanostructured copper. Applied Surface Science, 253(5): 727-2732.
  • 4. Dang, T.M.D., Le, T.T.T., Fribourg-Blanc, E. & Dang, M.C. 2011. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1): 015009. https://doi.org/10.1088/2043-6262/2/1/015009
  • 5. Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H. & Adibkia, K., 2014. Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44: 278-284. https://doi.org/10.1016/j.msec.2014.08.031
  • 6. Edison, T.J.I. & Sethuraman, M.G. 2012. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochemistry, 47: 1351-1357. https://doi.org/10.1016/j.procbio.2012.04.025
  • 7. Gottimukkala, K.S.V., Reddy, H.P. & Zamare, D. 2017. Green synthesis of iron nanoparticles using green tea leaves extract. Journal of Nanomedicine & Biotherapeutic Discovery, 7: 151. https://doi.org/10.4172/2155- 983X.1000151
  • 8. Hassanien, R., Husein, D.Z. & Al-Hakkani, M.F. 2018. Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities. Heliyon, 4(2018): e01077. https://doi.org/10.1016/j.heliyon.2018.e01077
  • 9. Irshad, S., Salamat, A., Anjum, A.A., Sana, S., Saleem, R.S.Z., Naheed, A. & Iqbal, A. 2018. Green tea leaves mediated ZnO nanoparticles and its antimicrobial activity. Cogent Chemistry, 4(1): 1469207. https://doi.org/10.1080/23312009.2018.1469207
  • 10. Jahan, I., Erci, F. & Isildak, I. 2019. Microwave-assisted green synthesis of non-cytotoxic silver nanoparticles using the aqueous extract of Rosa santana (rose) petals and their antimicrobial activity. Analytical Letters, 52(12): 1860- 1873. https://doi.org/10.1080/00032719.2019.1572179
  • 11. Jha, A.K., Prasad, K. & Kulkarni, A.R. 2009. Plant system: nature’s nano-factory. Colloids Surf B. Biointerfaces, 73(2): 219-223. https://doi.org/10.1016/j.colsurfb.2009.05.018
  • 12. Joseph, S. & Mathew, B. 2015. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 1371- 1379. https://doi.org/10.1016/j.saa.2014.10.023
  • 13. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumar, J. & Srinivasan, K. 2011. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3): 594- 598. https://doi.org/10.1016/j.saa.2011.03.040
  • 14. Keihan, A.H., Veisi, H. & Veasi H. 2016. Green synthesis and characterization of spherical copper nanoparticles as organometallic antibacterial agent. Applied Organometallic Chemistry, 31(7): e3642. https://doi.org/10.1002/aoc.3642
  • 15. Lee, H., Song, J.Y. & Kim, B.S. 2013. Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. Journal of Chemical Technology & Biotechnology, 88: 1971‑1977. https://doi.org/10.1002/jctb.4052
  • 16. López-García, J., Lehocký, M., Humpolíček, P. & Sáha, P. 2014. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. Journal of Functional Biomaterials, 5(2): 43-57. https://doi.org/10.3390/jfb5020043
  • 17. Lourenço, I.M., Pieretti, J.C., Nascimento, M.H.M., Lombello, C.B. & Seabra, A.B. 2019. Eco-friendly synthesis of iron nanoparticles by green tea extract and cytotoxicity effects on tumoral and non-tumoral cell lines. Energy, Ecology and Environment, 4: 261-270. https://doi.org/10.1007/s40974-019-00134-5
  • 18. Mathew, A. 2018. Green synthesis of CuO nanoparticles using tea extract. International Journal for Research in Applied Science & Engineering Technology, 6(IV): 3457- 3458. https://doi.org/10.22214/ijraset.2018.4573
  • 19. Nasrollahzadeh, M. & Sajadi, S.M. 2015. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. Journal of Colloid and Interface Science, 457: 141-147. https://doi.org/10.1016/j.jcis.2015.07.004
  • 20. Otte, H.M. 1961. Lattice parameter determinations with an x‐ray spectrogoniometer by the debye‐scherrer method and the effect of specimen condition. Journal of Applied Physics, 32: 1536-1546. https://doi.org/10.1063/1.1728392
  • 21. Phull, A.-R., Abbas, Q., Ali, A., Raza, H., Kim, S.J., Zia, M. & Haq I.-ul. 2016. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future Journal of Pharmaceutical Sciences, 2(1): 31-36. https://doi.org/10.1016/j.fjps.2016.03.001
  • 22. Reto, M., Figueira, M.E., Filipe, H.M. & Almeida, C.M. 2007. Chemical composition of green tea (Camellia sinensis) infusions commercialized in Portugal. Plant Foods for Human Nutrition, 62(4): 139-44. https://doi.org/10.1007/s11130-007-0054-8
  • 23. Rolim, W.R., Pelegrino, M.T., de Araújo Lima, B., Ferraz, L.S., Costa, F.N., Bernardes, J.S., Rodigues, T., Brocchi, M. & Seabra, A.B. 2019. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science, 463: 66-74. https://doi.org/10.1016/j.apsusc.2018.08.203
  • 24. Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P. & Mukherji, S. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater, 4(3): 707-716. https://doi.org/10.1016/j.actbio.2007.11.006
  • 25. Sahu, D., Kannan, G.M., Tailang, M. & Vijayaraghavan, R. 2016. In-vitro cytotoxicity of nanoparticles: a comparison between particle size and cell type. Journal of Nanoscience, 2016: 1-9. https://doi.org/10.1155/2016/4023852
  • 26. Sreeju, N., Rufus, A. & Philip, D. 2016. Microwaveassisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. Journal of Molecular Liquids, 221: 1008-1021. https://doi.org/10.1016/j.molliq.2016.06.08
  • 27. Suresh, Y., Annapurna, S., Bhikshamaiah, G. & Singh, A.K. 2014. Copper nanoparticles: green synthesis and characterization. International Journal of Scientific & Engineering Research, 5(3): 156-160.
  • 28. Sutradhar, P., Saha, M. & Maiti, D. 2014. Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. Journal of Nanostructure in Chemistry, 4: 86. https://doi.org/10.1007/s40097-014-0086-1
  • 29. Tanghatari, M., Sarband, Z.N., Rezaee, S. & Larijani, K. 2017. Microwave assisted green synthesis of copper nanoparticles. Bulgarian Chemical Communications, Special Issue J: 347-352.
  • 30. Tsuji, M., Hashimoto, M., Nishizawa, Y., Kubokawa, M. & Tsuji, T. 2005. Microwave-assisted synthesis of metallic nanostructures in solution, Chemistry, 11(2): 440-452. https://doi.org/10.1002/chem.200400417
  • 31. Usha, S., Ramappa, K.T., Hiregoudar, S., Vasanthkumar, G.D. & Aswathanarayana, D.S. 2017. Biosynthesis and characterization of copper nanoparticles from tulasi (Ocimum sanctum L.) leaves. International Journal of Current Microbiology and Applied Sciences, 6(11): 2219- 2228. https://doi.org/10.20546/ijcmas.2017.611.263
  • 32. Wei, Y., Chen, S., Kowalczyk, B., Huda, S., Gray, T.P. & Grzybowski, B.A. 2010. Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. Journal of Physical Chemistry C, 114(37): 15612-15616. https://doi.org/10.1021/jp1055683
  • 33. Yallappa, S., Manjanna, J., Sindhe, M.A., Satyanarayan, N.D., Pramod, S.N. & Nagaraja, K. 2013. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 110: 108-115. https://doi.org/10.1016/j.saa.2013.03.005