FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium culmorum (W.G. Smith)

Dünya çapında pek çok ülkede olduğu gibi Türkiye’de de Fusarium culmorum (W.G. Smith) başak yanıklığı ve kök çürüklüğü hastalıkları ile arpa ve buğday tarım alanlarında ekonomik kayıplara yol açar. Bu çalışmada, Türkiye’den köken alan 33 F. culmorum izolatının in vitro büyüme kapasitesi ile FcMgv1, FcStuA ve FcVeA genetik benzerliği aracılığı ile elde edilen fenotipik ve genetik karakterlerin ilişkisi incelenmiştir. Doğrusal büyüme oranı değerleri inkübasyonun 4. ve 7. günlerinde kaydedilmiştir. Ortalama doğrusal büyüme oranlarının 7,58±1.06 ve 14,7±1.26mm/gün arasında olduğu görülmüştür. Göreceli olarak yüksek LGR değerlerine sahip olduğu belirlenen F2 ile 18F izolatları ile göreceli olarak düşük LGR değerlerine sahip olduğu belirlenen 12F ve F19 izolatları multilokus temelli genotiplendirme analizlerinde kullanılmak üzere seçilmiştir. FcMgv1, FcStuA ve FcVeA genlerine ait sırasıyla 1733, 2001 ve 1898bç ürünler elde edilmiştir. Genler dizilenmiş, bir araya getirilmiş ve BLASTn ile maksimum olasılık topoloji analizi yapılmıştır. Her bir genin nükleotid dizisi NCBI'da 0,0-0,0 E-değeri ve 1188-3256 arası bit skoru vermiştir. Hizalama analizi en az %89 ön yükleme değeri ile sonuçlanmıştır. Ayrıca, benzer büyüme oranına sahip izolatlar filogenetik analizlerde aynı alt kümede yer almıştır. Bu çalışmada elde edilen bulgular, fungal yaşam için gerekli olan bu üç genin, genetik karakterizasyonda ve fenotipik ve genotipik özellikleri arasında ilişki kurulmasında kullanılabileceğini ortaya konmuştur. 

FcMgv1, FcStuA AND FcVeA BASED GENETIC CHARACTERIZATION IN Fusarium culmorum (W.G. Smith)

Fusarium culmorum (W.G. Smith) leads to economic losses in wheat and barley fields in Turkey as well as in many countries worldwide as a result of head blight and crown rot diseases. In this study, in vitro growth capacity of 33 F. culmorum isolates originating from Turkey and the relationship between phenotypic and genetic characteristics obtained based on similarities of FcMgv1, FcStuA and FcVeA genes were investigated. Linear growth rate values were recorded at 4th and 7th days of incubation. The mean linear growth rate values ranged from 7.58±1.06 to 14.7±1.26mm/day. The isolates F2 and 18F with relatively high linear growth values and the isolates 12F and F19 with relatively low linear growth values, were selected to be used in multiloci based genotyping analysis. FcMgv1, FcStuA and FcVeA genes were amplified in lengths of 1733, 2001 and 1898bp, respectively. The genes were sequenced, aligned and then subjected to BLASTn and to maximum likelihood topology analysis. Nucleotide sequence of each gene showed maximum hit with associated genes deposited in NCBI with 0.0-0.0 E-values and 1188 to 3256 bit scores. Alignment analysis resulted in at least 89% bootstrap support. Moreover, isolates with similar linear growth rates were co-clustered in phylogenetic analysis. The findings obtained in this study showed that the three genes which are essential for fungal survival could be used in genetic characterization analysis and in revealing the associations between their genetic and phenotypic characteristics.

___

  • 1. Albayrak, G., Yörük, E., Gazdagli, A. & Sharifnabi, B. 2016. Genetic diversity among Fusarium graminearum and F. culmorum isolates based on ISSR markers. Archieves of Biological Sciences, 68(2): 333-343.
  • 2. Bornet, B. & Branchard, M. 2001. Nonanchored inter simple sequence repeat (ISSR) Markers: reproducible and specific tools for genome fingerprinting. Plant Molecular Biology Reporter, 19: 209-215.
  • 3. Chung, W.H., Ishii, H., Nishimura, K., Ohshima, M., Iwama, T. & Yoshimatsu H. 2008. Genetic analysis and PCR-based identification of major Fusarium species causing head blight on wheat in Japan. Journal of General Plant Pathology, 10: 110-118.
  • 4. Desjardins, A.E. & Proctor, R.H. 2007. Molecular biology of Fusarium mycotoxins, International Journal of Food Microbiology, 119: 47-50.
  • 5. Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H.C. & Xu, J. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility heterokaryon formation, and plant infection. International Society for Molecular Plant-Microbe Interactions, 11: 1119-1127.
  • 6. Irzykowska, L., Bocianowski, J. & Baturo-Cieśniewska, A. 2013. Association of mating-type with mycelium growth rate and genetic variability of Fusarium culmorum. Central European Journal of Biology, 8(7): 701-711.
  • 7. Jiang, J., Liu, X., Yin, Y. & Ma, Z. 2011. Involment of a Velvet protein FgVeA in the regulation of asexual development lipid and seconder metabolisms in virulance in Fusarium graminearum. PLoS ONE, 6(11): e28291.
  • 8. Llorens, A., Hinojo, M.J., Mateo, R., Medina, A., Valle-Algarre, F.M., Gonzalez-Jaen, M.T. & Jimenez, M. 2006. Variability and characterization of mycotoxin producing Fusarium spp. isolates by PCR-RFLP analysis of the IGS-rDNA region. Antonie van Leeuwenhoek, 89: 465-478.
  • 9. Miedaner, T., Schilling, A.G. & Geiger, H.H. 2001. Molecular genetic diversity and variation for aggressiveness in populations of Fusarium graminearum and Fusarium culmorum sampled from wheat fields in different countries. Journal of Phytopathology, 149: 641-648.
  • 10. Miedaner, T., Cumagun, C.J.R. & Chakraborty, S. 2008. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156: 129-139.
  • 11. Mishra, P.K., Fox, R.T.V. & Culham, A. 2003. Inter simple sequence repeat and aggressiveness analysis revealed high genetic diversity, recombination and long-range dispersal in Fusarium culmorum. Annals of Applied Biology, 143: 291-301.
  • 12. Nicholson, P., Simpson, D.R., Weston, G., Rezanoor, H.N. & Lees, A.K. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology, 53: 17-37.
  • 13. Niessen, L. 2007. PCR-based diagnosis and quantification of mycotoxin producing fungi. International Journal of Food Microbiology, 119: 38-46.
  • 14. Obanor, F., Erginbas-Orakci, G., Tunali, B., Nicol, J.M. & Chakraborty, S. 2010. Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal Biology, 114: 753-765.
  • 15. O’Donnell, K., Kistler, H.C., Tacke, B.K. & Casper, H.H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences, 97(14): 7905-7910.
  • 16. Pasquali, M., Spanu, F., Scherm, B., Balmas, V., Hoffmann, L., Beyer, M. & Migheli, Q. 2013. FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner. PLoS ONE, 8(2): e57429.
  • 17. Pasquali, M. & Migheli, Q. 2014. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. International Journal of Food Microbiology, 189: 164-182.
  • 18. Pasquali, M., Pasquali, M., Beyer, M., Logrieco, A., Audenaert, K., Balmas, V., Basler, R., Boutigny, A.L., Chrpová, J., Czembor, E., Gagkaeva, T., González-Jaén, M.T., Hofgaard, I.S., Köycü, N.D., Hoffmann, L., Lević, J., Marín, P., Miedaner, T., Migheli, Q., Moretti, A., Müller, M.E., Munaut, F., Parikka, P., Pallez-Barthel, M., Piec, J., Scauflaire, J., Scherm, B., Stanković, S., Thrane, U., Uhlig, S., Vanheule, A., Yli-Mattila, T. & Vogelgsang, S. 2016. A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes. Frontiers in Microbiology, 7: e406.
  • 19. Przemieniecki, S.W., Kurowski, T.P. & Korzekwa, K. 2014. Chemotypes and geographic distribution of the Fusarium graminearum species complex. Environmental Biotechnology, 10(2): 45-54.
  • 20. Rozen, S. & Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132: 365-386.
  • 21. Sarver, B.A.J., Ward, T.J., Gale, L.R., Broz, K., Kistler, H.C., Aoki, T., Nicholson, P., Carter, J. & O'Donnell, K. 2011. Novel fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genetics and Biology, 48:1096-1107.
  • 22. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12): 2725-2529.
  • 23. van der Lee, T., Zhang, H., van Diepeningen, A. & Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Additives and Contaminants: Part A, 32(4): 453-460.
  • 24. Ward, T.J., Clear, R.M., Rooney, A.P., O’Donnell, K., Gaba, D., Patrick, S., Starkey, D.E., Gilbert, J., Geiser, D.M. & Nowicki, T.W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 45: 473-484.
  • 25. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. & Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Asid Research, 18(22): 6531-6535.
  • 26. Yli-Mattila, T., Gagkaeva, T., Ward, T.J., Aoki, T., Kıstler, H.C. & O'Donnell, K. 2009. A Novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia, 101: 841-852.
  • 27. Yli-Mattila, T., Hietaniemiv, R., Hussientcarlobos-Lopez, A. & Cumagun, C.Jr. 2013. Molecular quantification and genetic diversity of toxigenic Fusarium species in Northern Europe as compared to those in Southern Europe. Microorganisms, 1: 162-174.
  • 28. Yörük, E., Tunali, B., Kansu, B., Ölmez, F., Uz, G., Zümrüt, I.M., Sarıkaya, A. & Meyva, G. 2016. Characterization of high-level deoxynivalenol producer Fusarium graminearum and F. culmorum isolates caused head blight and crown rot diseases in Turkey. Journal of Plant Diseases and Protection, 123: 177-186.
  • 29. Yörük, E. & Sefer, Ö. 2017. Polymorphisms in FgMgv1, FgStuA and FgVeA genes associated with growth of Fusarium graminearum. Pp. 358-366. In: Arapgirlioğlu, H., Atık, A., Elliott, R.L. & Turgeon E. (eds), Researches on science and art in 21st century Turkey, Gece Kitaplığı, Ankara Volume 1, 364 pp.