EFFECT OF MODERATE STATIC MAGNETIC FIELD ON HUMAN BONE MARROW MESENCHYMAL STEM CELLS: A PRELIMINARY STUDY FOR REGENERATIVE MEDICINE

Statik Manyetik Alan (SMA), farklı hücre hatlarında fizyolojik süreçleri düzenleyen biyofizyolojik uyarıcılardan biridir. Mezenkimal kök hücreler (MKH’ler) rejeneratif tıp için önemli biyolojik araçlardır. SMA'ların yoğunluğuna ve süresine göre hücre membran polarizasyonunu, oksidatif ürün konsantrasyonlarını, gen ekspresyon modellerini ve hücre çoğalma oranlarını değiştirdiği bilinmesine rağmen, MKH'ler üzerindeki SMA etkileri henüz tam olarak açıklanmamıştır. Bu çalışmada, insan kemik iliği kaynaklı MKH'ler, silindirik Neodimyum Demir Bor (Nd2Fe14B) mıknatıslar kullanılarak orta derecede 328 mT SMA etkisinde bırakıldı ve hücrelerin oryantasyonu, çoğalma oranı ve osteojenik farklılaşma potansiyelleri incelendi. Sonuçlar, tedavi edilen hücrelerin, tedavi edilmeyen hücrelerden daha homojen bir yönelim kazandığını, ancak SMF etkisinin çoğalma oranlarını önemli ölçüde değiştirmediğini gösterdi. MKH’ler, osteojenik farklılaşmayı ve biyomineralizasyonu gözlemlemek için hem kimyasal olarak osteojenik indüksiyon hem de SMA altında büyütüldüğünde, Alkalin Fosfataz (ALP) aktivitesi kontrol gruplarına kıyasla önemli ölçüde azaldı. Alizarin Red S boyaması, uyarılan hücrelerde mineralleşmenin de azaldığını gösterdi. Sunulan sonuçlar, kolayca üretilen orta düzeyde bir SMA'nın in vitro veya in vivo olarak MKH kaderini kontrol etmek için yararlı bir fiziksel uyarıcı olabileceğinin altını çizmektedir.

EFFECT OF MODERATE STATIC MAGNETIC FIELD ON HUMAN BONE MARROW MESENCHYMAL STEM CELLS: A PRELIMINARY STUDY FOR REGENERATIVE MEDICINE

Static Magnetic Field (SMF) is one of the biophysiological stimulants which modulates physiological processes in different cell lines. Mesenchymal stem cells (MSCs) are important biological tools for regenerative medicine. Although it is known that SMFs cause a change in cellular membrane polarization, oxidative product concentrations, gene expression patterns and cell propagation rates, depending on exposure time and intensity, their effects on MSCs have not been properly explained yet. In this study, MSCs derived from human bone marrow were treated with moderate 328 mT SMF by using cylindric Neodymium Iron Boron (Nd2Fe14B) magnets to investigate its influence on orientation, proliferation rates and morphologies. Results showed that the treated cells gained more homogenous orientation than the non-treated cells, however SMF influence did not significantly change proliferation rates. The cells were grown under both chemically osteogenic induction and SMF to observe the osteogenic differentiation and biomineralization. Alkaline phosphatase (ALP) activity decreased significantly in the cells treated with SMF compared to the control groups. Alizarin Red S staining showed that mineralization also decreased in the cells. The results showed that an easily produced moderate SMF can be a useful physical stimulant to control the fate of MSC both in vitro and in vivo. 

___

  • 1. Brown, C., McKee, C., Bakshil, S., Walker, K., Hakman, E., Halassy, S., Svinarich, D., Dodds, R., Govind, C.K. & Chaudhry, G.R. 2019. Mesenchymal stem cells: Cell therapy and regeneration. Journal of Tissue Engineering and Regenerative Medicine, 13(9): 1738-1755. https://doi.org/ 10.1002/term.2914
  • 2. Cunha, C., Panseri, S., Marcacci, M., Tampieri, A. 2012. Evaluation of the effects of a moderate intensity static magnetic field application on human osteoblast-like cells. American Journal of Biomedical Engineering, 2(6): 263-268. https://doi.org/10.5923/j.ajbe.20120206.05
  • 3. Delaine-Smith, R.M. & Reilly, G.C. 2012. Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons Journal, 2(3): 169-180.
  • 4. Fitzsimmons, R.E.B., Mazurek, M.S., Soos, A. & Simmons, C.A. 2018. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cell International, 2018: 8031718. https://doi.org/10.1155/2018/8031718
  • 5. Friedenstein, A.J., Piatetzky Shapiro I.I. & Petrakova, K.V. 1966. Development in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16(3): 381-390.
  • 6. Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W. & Chen, C.S. 2009. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 5(1):17-26. https://doi.org/10.1016/j.stem.2009.06.016
  • 7. Golub, E. & Boesze-Battaglia, K. 2007. The role of alkaline phosphatase in mineralization. Current Opinion in Orthopaedics, 18(5): 444-448. https://doi.org/10.1097/BCO.0b013e3282630851
  • 8. Keating, A. 2017. The nomenclature of mesenchymal stem cells and mesenchymal stromal cells, pp. 8-10. In: Atkinson, K. (ed.). The Biology and Therapeutic Application of Mesenchymal Cells. New John Wiley & Sons, Jersey, 965 pp.
  • 9. Kim, E.C., Leesungbok, R., Lee, S., Lee, H.W., Park, S.H., Mah, S.J. & Ahn, S.J. 2015. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells. Bioelectromagnetics, 36(4): 267-276. https://doi.org/10.1002/bem.21903
  • 10. Kotani, H., Kawaguchi, H., Shimoaka, T., Iwasaka, M., Ueno, S., Ozawa, H., Nakamura, K. & Hoshi, K. 2002. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. Journal of Bone and Mineral Research, 17(10): 1814-1821. https://doi.org/10.1359/jbmr.2002.17.10.1814
  • 11. Lohmann, K.J. & Lohmann, C.M. 2019. There and back again: natal homing by magnetic navigation in sea turtles and salmons. Journal of Experimental Biology, 222 (Pt Suppl 1): jeb184077. https://doi.org/10.1242/jeb.184077
  • 12. Marędziak, M., Tomaszewski, K., Polinceusz, P., Lewandowski, D. & Marycz, K. 2017. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Electromagnetic Biology and Medicine, 36(1): 45-54. https://doi.org/10.3109/15368378.2016
  • 13. Markov, M.S. 2007. Magnetic field therapy: a review. Electromagnetic Biology and Medicine, 26(1): 1-23. https://doi.org/10.1080/15368370600925342
  • 14. Markov, M.S. 2015. XXIst Century megnetotherapy. Electromagnetic Biology and Medicine, 34(3): 190-196. https://doi.org/10.3109/15368378.2015.1077338
  • 15. Marycz, K., Kornicka, K. & Röcken, M. 2018. Static magnetic field (SMF) as a regulator of stem cell fate-new perspectives in regenerative medicine arising from an underestimated tool. Stem Cell Reviews and Reports, 14(6): 785-792. https://doi.org/10.1007/s12015-018-9847-4
  • 16. Murayama, M. 1965. Orientation of sickled erythrocytes in a magnetic field. Nature, 206(982): 420-422. https://doi.org/10.1038/206420a0
  • 17. Ogiue-Ikeda, M. & Ueno, S. 2004. Magnetic Cell Orientation Depending on Cell Type and Cell Density. IEEE Transections on Magnetics, 40(4): 3024-3026. https://doi.org/10.1109/TMAG.2004.830453
  • 18. Rajabzadeh, N., Fathi, E. & Farahzadi, R. 2019. Stem cell-based regenerative medicine. Stem Cell Investigation, 6(19). https://doi.org/10.21037/sci.2019.06.04
  • 19. Sadri, M., Abdolmaleki, P., Behmanesh, M., Abrun, S., Beiki, B. & Samani, F.S. 2017. Static magnetic field effect on cell alignment, growth and differentiation in human cord-derived mesenchymal stem cells. Cellular and Molecular Engineering, 10(3): 249-262. https://doi.org/10.1007/s12195-017-0482-y
  • 20. Silva, L.H., Silva, S.M., Lima, E.D., Silva, R.C., Weiss, D.J., Morales, M.M., Cruz, F.F. & Rocco, P.R.M. 2018. Effects of static magnetic fields on natural or magnetized mesenchymal stromal cells: Repercussions for magnetic targeting, Nanomedicine, 14(7): 2075-2085. https://doi.org/10.1016/j.nano.2018.06.002
  • 21. Stefanita, C.G. 2012. Traditional Magnetism. pp. 1-38. In: Stefanita, C.G. (ed.). Magnetism: Basic and Application. Springer, London, 188 pp.
  • 22. Suman, S., Domingues A, Ratajczak J. & Ratajczak MZ. 2019. Potential clinical applications of stem cells in regenerative medicine. Advances in Experimental Medicine and Biology, 1201:1-22. https://doi.org/10.1007/978-3-030-31206-0_1
  • 23. Trohatou, O. & Roubelakis, M.G. 2017. Mesenchyal stem/stromal cells in regenerative medicine: past, present and future. Cellular Programming, 19(4): 217-224. https://doi.org/10.1089/cell.2016.0062
  • 24. Yamamato, Y., Ohsaki, Y., Goto, T., Nakasima, A. & Lijima, T. 2003. Effects of static magnetic fields on bone formation in rat osteoblast cultures. Journal of Dental Research, 82(12): 962-966. https://doi.org/10.1177/154405910308201205
  • 25. Yang, J., Zhang, J., Ding, C., Dong, D. & Shang, P. 2018. Regulation of osteoblast differentiation and iron content in MC3T3-E1 cells by static magnetic field with different intensities. Biological Trace Element Research, 184(1): 214-225. https://doi.org/10.1007/s12011-017-1161-5
  • 26. Wang, X.B., Xiang, B., Deng, J., Freed, D.H., Arora, R. & Tian, G. 2016. Inhibition of viability, proliferation, cytokines secretion, surface antigen expression, and adipogenic and osteogenic differentiation of adipose-derived stem cells by seven-day exposure to 0.5 T static magnetic fields. Stem Cells International, 2016: 7168175. https://doi.org/10.1155/2016/7168175
  • 27. Wills, B.A. & Finch, J.A. 2015. Magnetic and Electrical Separation. pp. 381-407. In: Wills BA, Finch JA (eds). Wills' Mineral Processing Technology. Elsevier, Butterworth-Heinemann, 512 pp.
  • 28. Zhang, X., Yarema, K. & Xu, A. 2017a. Parameters of Magnetic Fields and Their Differential Biological Effects. 3-25. In: Zhang, X., Yarema, K. & Xu, A. (eds). Biological Effects of Static Magnetic Fields. Springer, Singapore, 172 pp.
  • 29. Zhang, X., Yarema, K. & Xu, A. 2017b. Impact of Static Magnetic Fields (SMFs) on Cells. 81-131. In: Zhang, X., Yarema, K. & Xu, A. (eds). Biological Effects of Static Magnetic Fields. Springer, Singapore, 172 pp.