Poliglutamik asit (PGA) yüksek üretim maliyeti olan, suda çözünen ve biyobozunabilir bir polimerdir. Bu çalışmada, fizıbıl PGA üretimi için tavuk tüyü hidrolizatları (TH) fermantasyon substratı olarak kullanılmıştır. Keratinaz enzimi eldesi için, Streptomyces pactum DSM 40530 ile doğal tavuk tüyleri fermente (30L) edilmiştir. Fermantasyon çözeltisindeki enzim aktivitesi, çapraz akışlı filtrasyon ünitesi kullanılarak 8,75 kat deriştirilmiştir. Enzim aktivitesi (8×103UL-1gün-1), gram tavuk tüyü başına %75’lik bozunma için optimum değer olarak belirlenmiştir. PGA üretimi için Bacillus licheniformis 9945a kullanılmış ve 40g/L TH kullanılarak farklı kompozisyonlarda besiyeri çözeltileri hazırlanmıştır. Besiyeri-E bileşenleri olan L-glutamat, sodyum sitrat ve gliserol kullanılarak dört farklı kompozisyonda besiyeri hazırlanmıştır. Bunlar arasında en fazla PGA ve kuru hücre maddesi (KHM) üretimi, glutamik asit içermeyen bir numaralı kültürde, sırasıyla 5,4±0,4 and 8,6±0,5g/L olarak gerçekleşmiştir. Glutamik asitin yanı sıra sitrik asitin de olmadığı iki numaralı kültürde PGA ve KHM değerleri sırasıyla 3,2±0,2 ve 7,8±0,4g/L olurken, sadece TH’nin substrat olarak kullanıldığı üç numaralı kültürde yalnızca 1,9±0,2 ve 4,2+0,4g/L değerleri elde edilmiştir. Sadece gliserolün kullanılmadığı dört numaralı kültürde ise PGA ve KHM değerleri bir miktar yükselmiş ve sırasıyla 2,3±0,2 ve 5,5±0,3g/L değerlerini almıştır. Yapılan çalışma PGA üretiminin TH kullanılarak yapıldığı İlk çalışma olmuştur.

BIOPRODUCTION OF γ-POLY(GLUTAMIC ACID) USING FEATHER HYDROLYSATE AS A FERMENTATION SUBSTRATE

Polyglutamic acid (PGA) is water-soluble and biodegradable polymer with high production cost. For feasible PGA production, feather hydrolysate (FH) was used as fermentation substrate. 30L fermentation of native feather was realized to obtain keratinase enzyme using Streptomyces pactum DSM 40530. Fermentation broth was concentrated by cross-flow filtration where the enzyme activity increased by 8.75-fold and 8×103UL-1d-1 of enzyme activity was the optimum for achieving 75% degradation per gram of feather. 40g/L of FH was used with different media compositions to produce PGA using Bacillus licheniformis 9945a. Among four different cultivation where L-glutamate, tri-sodium citrate and glycerol were used as the constituents of Medium E, highest yields of γ-PGA and cell dry matter (CDM) were obtained from cultivation-1, at 5.4±0.4 and 8.6±0.5g/L, respectively, despite the culture media did not contain glutamic acid. In cultivation-2, which was not only missing glutamate but also citrate, the γ-PGA and CDM yielded 3.2±0.2 and 7.8±0.4g/L, respectively whereas it was only 1.9±0.2 and 4.2+0.4g/L when FH was used as the sole substrate in cultivation-3. When cultivation-4 was adopted where only glycerol was missing, the γ-PGA and CDM yields slightly increased to 2.3±0.2 and 5.5±0.3g/L, respectively. This is the first study that achieved the production of γ-PGA from FH.

___

  • 1. Aboulmagd, E., Oppermann-Sanio, F.B. & Steinbüchel, A. 2000. Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC 6308. Archives of Microbiology, 174: 297-306.
  • 2. Altun, M., Wiefel, L. & Steinbüchel, A. 2018. Cyanophycin production from feather hydrolysate using biotechnological methods. Preparative Biochemistry and Biotechnology, https://doi.org/10.1080/10826068.2018.1476881.
  • 3. Ashiuchi, M., Shimanouchi, K., Horiuchi, T., Kamei, T. & Misono, H. 2006. Genetically engineered poly-γ-glutamate producer from Bacillus subtilis ISW1214. Bioscience, Biotechnology, and Biochemistry, 70(7): 1794-1797.
  • 4. Bajaj, I. & Singhal, R. 2011. Poly(glutamic acid) – An emerging biopolymer of commercial interest. Bioresource Technology, 102: 5551-5561.
  • 5. Ben-Zur, N. & Goldman, D.M. 2007. γ-Poly glutamic acid: a novel peptide for skin care. Cosmetics and toiletries, 122: 65-74.
  • 6. Böckle, B. & Müller, R. 1997. Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Applied and Environmental Microbiology, 63(2): 790-792.
  • 7. Böckle, B., Galunsky, B. & Müller, R. 1995. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Applied and Environmental Microbiology, 61(10): 3705-3710.
  • 8. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • 9. Buescher, J.M. & Margaritis, A.M. 2007. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Critical Reviews in Biotechnology, 27: 1-19.
  • 10. Cao, M., Geng, W., Liu, L., Song, C., Xie, H., Guo, W., Jin, Y. & Wang, S. 2011. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresource Technology, 102: 4251-4257.
  • 11. Cromwick, A.M., Birrer, G.A. & Gross, R.A. 1996. Effects of pH and aeration on γ-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnology and Bioengineering, 50: 222-227.
  • 12. Du, G., Yang, G., Qu, Y., Chen, J. & Lun, S. 2005. Effects of glycerol on the production of poly(γ-glutamic acid) by Bacillus licheniformis. Process Biochemistry, 40: 2143-2147.
  • 13. Goto, A. & Kunioka, M. 1992. Biosynthesis and Hydrolysis of Poly(γ-glutamic acid) from Bacillus subtilis IF03335. Bioscience, Biotechnology, and Biochemistry, 56(7): 1031-1035.
  • 14. Hoppensack, A., Oppermann-Sanio, F.B. & Steinbüchel, A. 2003. Conversion of the nitrogen content in liquid manure into biomass and polyglutamic acid by a newly isolated strain of Bacillus licheniformis. FEMS Microbiology Letters, 218: 39-45.
  • 15. Inbaraj, B.S., Kao, T.H., Tsai, T.Y., Chiu, C.P., Kumar, R. & Chen, B.H. 2011. The synthesis and characterization of poly(γ -glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity. Nanotechnology, 22(7): 075101.
  • 16. Jeong, J.H., Kim, J.N., Weeb, Y.J. & Ryu, H.W. 2010. The statistically optimized production of poly(γ-glutamic acid) by batch fermentation of a newly isolated Bacillus subtilis RKY3. Bioresource Technology, 101: 4533-4539.
  • 17. Ko, Y.H. & Gross, R.A. 1998. Effects of glucose and glycerol on γ -poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnology and Bioengineering, 57(4): 430-437.
  • 18. Korniłłowicz-Kowalska, T. & Bohacz, J. 2011. Biodegradation of keratin waste: theory and practical aspects. Waste Management, 31: 1689-1701.
  • 19. Kubota, H., Nambu, Y. & Endo, T. 1995. Convenient esterification of poly(γ-glutamic acid) produced by microorganism with alkyl halides and their thermal properties. Journal of Polymer Science, 33: 85-88.
  • 20. Kunert, J. 1992. Effect of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporum gypseum. Mycoses, 35: 343-348.
  • 21. Kurosaki, T., Kitahara, T., Fumoto, S., Nishida, K., Nakamura, J., Niidome, T., Kodama, Y., Nakagawa, H., To, H. & Sasaki, H. 2009. Ternary complexes of pDNA, polyethylenimine, and γ-polyglutamic acid for gene delivery systems. Biomaterials, 30: 2846-2853.
  • 22. Leonard, C.G., Housewright, R.D. & Thorne, C.B. 1958. Effects of metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. Journal of Bacteriology, 76: 499-503.
  • 23. Murao, S., Murakawa, T. & Omata, S. 1971. Polyglutamic acid fermentation: Culture condition for the production of polyglutamic acid by Bacillus subtilis no. 5E, effects of amino acids and glucose. Part II. Nippon Nogeikagaku Kaishi, 45: 118-123.
  • 24. Ogata, M., Hidari, K.I., Murata, T., Shimada, S., Kozaki, W., Park, E.Y., Suzuki, T. & Usui, T. 2009. Chemoenzymatic synthesis of sialoglycopolypeptides as glycomimetics to block infection by avian and human influenza viruses. Bioconjugate Chemistry, 20: 538-549.
  • 25. Ogunleye, A., Bhat, A., Irorere, V.U., Hill, D., Williams, C. & Radecka, I. 2015. Poly-γ-glutamic acid: production, properties and applications. Microbiology, 161: 1-17.
  • 26. Qiu, Y., Sha, Y., Zhang, Y., Xu, Z., Li, S., Lei, P., Xu, Z., Feng, X. & Xu, H. 2017. Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S. Bioresource Technology, 239: 197-203.
  • 27. Ramani, P., Singh, R. & Gupta, R. 2005. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Canadian Journal of Microbiology, 51(3): 191-196.
  • 28. Sangali, S. & Brandelli, A. 2000. Feather keratin hydrolysis by a Vibrio sp. strain kr2. Journal of Applied Microbiology, 89: 735-743.
  • 29. Steinle, A., Bergander, K. & Steinbüchel, A. 2009. Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids. Applied and Environmental Microbiology, 75: 3437-3446.
  • 30. Sung, M.H., Park, C., Kim, C.J., Poo, H., Soda, K. & Ashiuchi, M. 2005. Natural and edible biopolymer poly- γ -glutamic acid: synthesis, production, and applications. Chemical Record, 5: 352-366.
  • 31. Thys, R.C.S., Lucas, F.S., Riffel, A., Heeb, P. & Brandelli, A. 2004. Characterization of a protease of a feather degrading Microbacterium species. Letters in Applied Microbiology, 39: 181-186.
  • 32. Troy, F.A. 1973. Chemistry and biosynthesis of the poly(γ-D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane mediated biosynthesis reaction. Journal of Biological Chemistry, 248: 306-315.
  • 33. Uotani, K., Hidetoshi, K., Endou, H. & Tokita, F. 2012. Sialogogue, oral composition and food product containing the same. US Patent 7910089 B2.
  • 34. Vasileva-Tonkova, E., Nustorova, M. & Gushterova, A. 2007. New protein hydrolysates from collagen wastes used as peptone for bacterial growth. Current Microbiology, 54: 54-57.
  • 35. Wang, Q., Chen, S., Zhang, J., Sun, M., Liu, Z. & Yu, Z. 2008. Co-producing lipopeptides and poly- γ -glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects. Bioresource Technology, 99: 3318-3323.