Cut-Off values for EEG frequency in differentiation of alzheimer, non-alzheimer dementia and healthy subjects: An application of 3D-ROC surface method
Amaç: İlk olarak en az üç grubun ayırıcı tanısını yapmak için kullanılabilecek parametrik olmayan ROC yüzeyi metodunun yaygınlaşmasını sağlamak için yeni bir makro programı yazmayı; ikinci olarak bu metotla Alzheimer tipi demans (AD), non-Alzheimer tipi demans (NAD) ve sağlıklı bireylerin ayırıcı tanısında ortalama EEG frekansının kullanılabilirliğini araştırmayı ve üçüncü olarak ortalama EEG frekansına ait cut-off değerleri belirlemeyi amaçladık. Hastalar ve Yöntemler: Çalışmadaki bireylerin sol frontal bölgesinden kaydedilen EEG örneklerinin ortalama frekansı hesaplanmış ve ROC yüzeyi metodu ile grupların ayırımı planlanmıştır. Bulgular: Ortalama EEG frekansına göre ROC yüzeyi altındaki hacim 0.464, bootstrap standart sapması ise 0.150 olarak hesaplanmıştır. Grupları ayırmada ortalama frekansın başarısı istatistiksel olarak anlamlı bulunmuştur (Z=1.99 ve p=0.024). Muhtemel bütün değerler arasından en uygun cutoff değerleri sensitivite ve spesifite değerlerine göre belirlenmiştir. Alzheimer tipi demans hastalarını bireylerinden en iyi ayıran değer 8 Hz iken NAD bireylerini sağlıklı bireylerden en iyi ayıran değer 10 Hz olarak belirlenmiştir. Bu cut-off çiftinin kullanılması ile AD tanısı için sensitivite %87.5 ve toplam doğru tanı başarısı %65 olarak bulunmuştur. Sonuç: Bulgularımıza dayanarak ortalama EEG frekansının AD diğer demanslılar ve sağlıklı bireylerden ayırmada bir ön tanı aracı olarak kullanılabileceğini önerebiliriz.
Alzheimer demansı, diğer tip demanslılar ve sağlıklı bireylerin ayrımında EEG Frekansı için Cut-Off değerleri: 3D-ROC yüzeyi metodunun bir uygulaması
Objectives: To write a new macro programme for the use of the non-parametric 3-D Receiver Operating Characteristic (ROC) surface method in the discrimination of three or more groups, to study the usefulness of electroencephalography (EEG) frequency in the diagnosis of Alzheimer type dementia (AD), non-Alzheimer type dementia (NAD) and healthy subjects, and to determine cut-off values of EEG frequency. Patients and Methods: The mean EEG frequencies in the left fontal region EEG records of subjects in the present study were calculated and the ROC surface method was used in discrimination of the groups. Results: The volume under the ROC surface was calculated as 0.464±0.150. Accuracy of the mean frequency in differentiation of groups was statistically significant (p=0.024). 8 Hz was found to be convenient for differentiation of AD from NAD patients and 10 Hz for the differentiation of NAD patients and healthy subjects. The sensitivity was 87.5% for Alzheimer's dementia diagnosis and total accuracy was 65% using this cut-off pair. Conclusion: We suggest that the mean EEG frequency may be used only as a pre-diagnostic tool for the differential diagnosis of these groups.
___
- 1) Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett 2006;27:861-74.
- 2) Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn 2001;45:171-86.
- 3) Everson RM, Fieldsend JE. Multi-class ROC analysis from a multi-objective optimisation perspective. Pattern Recognit Lett 2006;27:918-27.
- 4) Mossman D. Three-way ROCs. Med Decis Making 1999;19:78-89.
- 5) Dreiseitl S, Ohno-Machado L, Binder M. Comparing threeclass diagnostic tests by three-way ROC analysis. Med Decis Making 2000;20:323-31.
- 6) Nakas CT, Yiannoutsos CT. Ordered multiple-class ROC analysis with continuous measurements. Stat Med 2004;23:3437-49.
- 7) Chi YY, Zhou XH. Receiver operating characteristic surfaces in the presence of verification bias. J R Stat Soc Ser C Appl Stat 2008;57:1.23.
- 8) Heckerling PS. Parametric three-way receiver operating characteristic surface analysis using mathematica. Med Decis Making 2001;21:409-17.
- 9) Fratiglioni L, Launer LJ, Andersen K, Breteler MM, Copeland JR, Dartigues JF, et al. Incidence of dementia and major subtypes in Europe: A collaborative study of population- based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 2000;54(11 Suppl 5):S10-5.
- 10) Evans DA. Estimated prevalence of Alzheimer's disease in the United States. Milbank Q 1990;68:267-89.
- 11) Lim WS, Chong MS, Sahadevan S. Utility of the clinical dementia rating in Asian populations. Clin Med Res 2007;5:61-70.
- 12) Soininen H, Partanen VJ, Helkala EL, Riekkinen PJ. EEG findings in senile dementia and normal aging. Acta Neurol Scand 1982;65:59-70.
- 13) Kowalski JW, Gawel M, Pfeffer A, Barcikowska M. The diagnostic value of EEG in Alzheimer disease: correlation with the severity of mental impairment. J Clin Neurophysiol 2001;18:570-5.
- 14) Hughes JR, Shanmugham S, Wetzel LC, Bellur S, Hughes CA. The relationship between EEG changes and cognitive functions in dementia: a study in a VA population. Clin Electroencephalogr 1989;20:77-85.
- 15) Prinz PN, Vitiello MV. Dominant occipital (alpha) rhythm frequency in early stage Alzheimer's disease and depression. Electroencephalogr Clin Neurophysiol 1989;73:427-32.
- 16) Brenner RP, Ulrich RF, Spiker DG, Sclabassi RJ, Reynolds CF 3rd, Marin RS, et al. Computerized EEG spectral analysis in elderly normal, demented and depressed subjects. Electroencephalogr Clin Neurophysiol 1986;64:483-92.
- 17) Hughes JR, John ER. Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci 1999;11:190-208.
- 18) Jeong J. EEG dynamics in patients with Alzheimer's disease. Clin Neurophysiol 2004;115:1490-505.
- 19) Gueguen B, Derouesné C, Bourdel MC, Guillou S, Landre E, Gaches J, et al. Quantified EEG in the diagnosis of Alzheimer's type dementia. Neurophysiol Clin 1991;21:357-71.[Abstract]
- 20) Watanabe H, Koike Y, Takahashi A, Iguchi H. EEG changes during mental calculation, reverse recitation and association exercises in patients with dementia of the Alzheimer type. Intern Med 1993;32:87-93.
- 21) Adler G, Brassen S, Jajcevic A. EEG coherence in Alzheimer's dementia. J Neural Transm 2003;110:1051-8.
- 22) Xiong C, van Belle G, Miller JP, Morris JC. Measuring and estimating diagnostic accuracy when there are three ordinal diagnostic groups. Stat Med 2006;25:1251-73.
- 23) Agresti A. Inference for two-way contingency tables. In: Agresti A, editor. Categorical data analysis. 1st ed. New York: Wiley; 1990. p.36-78.
- 24) Ettlin TM, Staehelin HB, Kischka U, Ulrich J, Scollo- Lavizzari G, Wiggli U, et al. Computed tomography, electroencephalography, and clinical features in the differential diagnosis of senile dementia. A prospective clinicopathologic study. Arch Neurol 1989;46:1217-20.
- 25) Erkinjuntti T, Larsen T, Sulkava R, Ketonen L, Laaksonen R, Palo J. EEG in the differential diagnosis between Alzheimer's disease and vascular dementia. Acta Neurol Scand 1988;77:36-43.
- 26) Saletu B, Anderer P, Paulus E, Grünberger J, Wicke L, Neuhold A, et al. EEG brain mapping in diagnostic and therapeutic assessment of dementia. Alzheimer Dis Assoc Disord 1991;5 Suppl 1:S57-75.
- 27) Lindau M, Almkvist O, Kushi J, Boone K, Johansson SE, Wahlund LO, et al. First symptoms--frontotemporal dementia versus Alzheimer's disease. Dement Geriatr Cogn Disord 2000;11:286-93.