TEL EREZYON, LAZER IŞINI VE PLAZMA ARK KESME İŞLEMLERİNİN MEKANİK ve MİKROYAPISAL BAKIMINDAN KARŞILAŞTIRILMASI

Bu çalışmada lazer, plazma ve Wire electrical discharge machining (WEDM) ile kesme yöntemleri S355JR yapısal çeliği ve Hardox 450 martensitic çeliğin kesilmesi ile deneysel olarak araştırılmıştır. Kesme işlemlerinin maliyet, üretim hızı, kenar kalitesi, yüzey kalitesi ve üretim toleranslarına etkisi sunulmuştur. Kesilmiş numunelerde kesim yönteminin etkisiyle oluşan mekanik ve mikroyapısal etkiler araştırılmıştır. Endüstride lazer ışını, plazma arkı kesme yöntemleri yaygın olarak kullanılmaktadır. WEDM yöntemi ise bu iki yönteme göre daha kısıtlı bir kullanım alanına sahiptir. S355JR ve Hardox 450 çeliklerinden bu üç yöntemle kesilen numunelerin mukavemet değerlerinin kesme işlemine bağlı olarak çekme ve eğme dayanımlarını etkilediği görülmüştür. WEDM, lazer ve plazma yöntemleri ile kesilen yüzeylerde tespit edilen maksimum sertlik değerleri sırasıyla 435, 440 ve 481 HV’dir. Plazma kesimde 8 mm kalınlığındaki sacların kesilen yüzeylerinde 5 ± 0.72° dikey eğim (koniklik) meydana gelirken lazer kesimde 0.3 ± 0.15° dikey eğim meydana geldiği tespit edildi. WEDM yönteminde ise kesilen kenarda bu biçimde koniklik oluşmadığı tespit edilmiştir. Kesim yüzeyi incelendiğinde boyutsal toleranslar ve yüzey pürüzlüğü başarısı bakımından tel erezyon, lazer, plazma kesme yöntemi biçiminde sıralanabilir.

MECHANICAL AND MICROSTRUCTURAL COMPARISON OF WIRE ELECTRICAL DISCHARGE MACHINING, LASER BEAM AND PLASMA ARC CUTTING PROCESSES

In this study, laser, plasma, and Wire electrical discharge machining (WEDM) cutting methods were experimentally investigated by cutting S355JR structural steel and Hardox 450 martensitic steel. The effects of cutting processes on production speed, edge quality, surface quality and production tolerances are presented. The mechanical and microstructural effects of the cutting method on the cut samples were investigated. Laser beam, plasma arc cutting methods are widely used in industry. The WEDM method, on the other hand, has a more limited area of use compared to these two methods. It has been observed that the strength values of the samples cut from S355JR and Hardox 450 steels with these three methods affect the tensile and bending strengths depending on the cutting process. The maximum hardness values detected on the surfaces cut by WEDM, laser and plasma methods are 435, 440 and 481 HV, respectively. It was determined that 5 ± 0.72° vertical inclination (conicity) occurred on the cut surfaces of 8 mm thick sheets in plasma cutting, while a vertical inclination of 0.3 ± 0.15° occurred in laser cutting. In the WEDM method, it was determined that the cut edge did not form in this way. When the cut surface is examined, it can be sorted as Wire electrical discharge machining, plasma cutting, laser method in terms of dimensional tolerances and surface roughness success.

___

  • Altuğ, M. (2019). Investigation of Hardox 400 Steel exposed to heat treatment processes in WEDM Investigation of Hardox 400 Steel Exposed to Heat Treatment Processes in WEDM, 9(1), 237–244. Retrieved from https://doi.org/10.2339/politeknik.417764
  • Barényi, I. (2016). Microstructure changes in cut face obtained by plasma and laser cutting of selected high strength steels. UPB Scientific Bulletin, Series D: Mechanical Engineering, 78(1), 233–240.
  • Bobbili, R., Madhu, V., & Gogia, A. K. (2013). Effect of wire-EDM machining parameters on surface roughness and material removal rate of high strength armor steel. Materials and Manufacturing Processes, 28(4), 364–368. Retrieved from https://doi.org/10.1080/10426914.2012.736661
  • Borchers, F., Clausen, B., Eckert, S., Ehle, L., Epp, J., Harst, S., Strunk, R. (2020). Comparison of different manufacturing processes of aisi 4140 steel with regard to surface modification and its influencing depth. Metals, 10(7), 1–27. Retrieved from https://doi.org/10.3390/met10070895
  • Boujelbene, M. (2018). Influence of the CO2 laser cutting process parameters on the Quadratic Mean Roughness Rq of the low carbon steel. Procedia Manufacturing, 20, 259–264. Retrieved from https://doi.org/10.1016/j.promfg.2018.02.038
  • Boujelbene, M., Alghamdi, A. S., Miraoui, I., Bayraktar, E., & Gazbar, M. (2017). Effects of the laser cutting parameters on the micro-hardness and on the heat affected zone of the mi-hardened steel. International Journal of ADVANCED AND APPLIED SCIENCES, 4(5), 19–25. Retrieved from https://doi.org/10.21833/ijaas.2017.05.003
  • Celik, H. K., Rennie, A. E. W., & Akinci, I. (2017). Design and structural optimisation of a tractor mounted telescopic boom crane. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(3), 909–924. Retrieved from https://doi.org/10.1007/s40430-016-0558-y
  • Göğüş, M. T., Cabiroğlu, A., Ekmekyapar, T., & Özakça, M. (2014). Effect of Specimen Preparation Methods for Tension Test on Design of Cold-Formed Steel Members, 126–130. Gostimirović, M. (2020). An Experimental Analysis of Cutting Quality in Plasma Arc Machining, 1(June). Retrieved from https://doi.org/10.24867/ATM-2020-1-001
  • Harničárová, M., Zajac, J., & Stoić, A. (2010). Comparison of different material cutting technologies in terms of their impact on the cutting quality of structural steel. Tehnicki Vjesnik, 17(3), 371–376.
  • Ho, K. H., Newman, S. T. Ã., Rahimifard, S., & Allen, R. D. (2004). State of the art in wire electrical discharge machining ( WEDM ), 44, 1247–1259. Retrieved from https://doi.org/10.1016/j.ijmachtools.2004.04.017
  • İrsel, G., & Güzey, B. N. (2021). Comparison of laser beam, oxygen and plasma arc cutting methods in terms of their advantages and disadvantages in cutting structural steels. Journal of Physics: Conference Series, 2130(1), 012022. Retrieved from https://doi.org/10.1088/1742-6596/2130/1/012022
  • Karpat, F., & Yuce, C. (2020). Experimental measurement and numerical validation of single tooth stiffness for involute spur gears, 150. Retrieved from https://doi.org/10.1016/j.measurement.2019.107043
  • Klimpel, A., Cholewa, W., Bannister, A., Luksa, K., Przystałka, P., Rogala, T., … Martín-Meizoso, A. (2017). Experimental investigations of the influence of laser beam and plasma arc cutting parameters on edge quality of high-strength low-alloy (HSLA) strips and plates. International Journal of Advanced Manufacturing Technology, 92(1–4), 699–713. Retrieved from https://doi.org/10.1007/s00170-017-0119-2
  • Kumar, R., & Singh, S. (2012). Current Research Trends in Wire Electrical Discharge Machining: An Overview. International Journal on Emerging Technologies, 3(1), 33–40.
  • Masoudi, S., Mirabdolahi, M., Dayyani, M., Jafarian, F., Vafadar, A., & Dorali, M. R. (2019). Development of an intelligent model to optimize heat-affected zone, kerf, and roughness in 309 stainless steel plasma cutting by using experimental results. Materials and Manufacturing Processes, 34(3), 345–356. Retrieved from https://doi.org/10.1080/10426914.2018.1532579
  • Miraoui, I., Boujelbene, M., & Bayraktar, E. (2015). Analysis of cut surface quality of sheet metals obtained by laser machining: thermal effects. Advances in Materials and Processing Technologies, 1(3–4), 633–642. Retrieved from https://doi.org/10.1080/2374068X.2016.1147759
  • Patel, P., Nakum, B., Abhishek, K., & Rakesh Kumar, V. (2018). Machining performance optimization during plasma arc cutting of AISI D2 steel: application of FIS, nonlinear regression and JAYA optimization algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(4). Retrieved from https://doi.org/10.1007/s40430-018-1087-7
  • Patel, S. S., & Patel, D. M. (2021). Investigation of machining characteristics of SKD 11 in WEDM. Materials Today: Proceedings, (xxxx). Retrieved from https://doi.org/10.1016/j.matpr.2021.11.468
  • Thomas, D. J. (2011). The influence of the laser and plasma traverse cutting speed process parameter on the cut-edge characteristics and durability of Yellow Goods vehicle applications. Journal of Manufacturing Processes, 13(2), 120–132. Retrieved from https://doi.org/10.1016/j.jmapro.2011.02.002
  • Verma, R. K., Upadhyay, R. K., & Rizvi, S. A. H. (2021). Modeling of kerf width during WEDM of die steel D3. Materials Today: Proceedings, (xxxx). Retrieved from https://doi.org/10.1016/j.matpr.2021.11.115
  • Yilbas, B. S. (2008). Laser cutting of thick sheet metals: Effects of cutting parameters on kerf size variations. Journal of Materials Processing Technology, 201(1–3), 285–290. Retrieved from https://doi.org/10.1016/j.jmatprotec.2007.11.265