ÜÇ BOYUTLU AĞIRLIK MERKEZİNİN TESPİTİNE DAYANARAK AĞIRLIK MERKEZİ KONUMUNUN DEVRİLME ÜZERİNDEKİ ETKİLERİ

Kamyon devrilme kazalarının önlenmesi, Birleşmiş Milletler Sürdürülebilir Kalkınma hedefi (SDG) numarası 9 olan trafik güvenliğini sağlamak için büyük önem taşımaktadır. Daha ağır yüklere sahip kamyonların devrilme olasılığının daha yüksek olduğu düşüncesi, devrilme kazalarına ilişkin bir yanlış anlaşılmadır. Aslında, kamyon bir eğimden geçtiğinde, merkezkaç kuvveti momenti yerçekimi momentinden daha büyükse, kamyon devrilme eğiliminde olacaktır. Kamyonun hızı düşük olsa ve yük ağır olmasa bile, ağırlık merkezi (COG) yüksekse, merkezkaç momenti güçlü olacaktır. Bu nedenle, ağırlık merkezinin konumunu bulmak çok önemlidir. Kamyonlar genellikle aynı anda birden fazla tür yük taşır. Her kargo türü farklı miktar ve hacme sahiptir. Zaman ve ekonomik maliyetler göz önüne alındığında, parça parça hesaplama ile tüm kamyonun ağırlık merkezi konumunu bulmak neredeyse imkansızdır. Ancak üç boyutlu ağırlık merkezinin (D3DCG) tespiti, bir kamyon hareket ederken ağırlık merkezinin konumunu kısa sürede gösterebilir. Bu makale ilk olarak, bir kamyonun devrilip devrilmediğinin yatay kurp, hız, ağırlık merkezi yüksekliği ve her iki taraftaki tekerlekler arasındaki mesafe ile ilgili olduğunu gösteren kamyon devrilme prensibini tanıtmaktadır. İkinci olarak, bu çalışmanın sonuçları, hareket eden kamyonun doğal frekansı temel alınarak ağırlık merkezi konumunu hesaplayabilen Üç Boyutlu Ağırlık Merkezinin Tespiti teorisini göstermektedir. Daha sonra, yazarlar üç boyutlu ağırlık merkezinin doğruluğunu tespit etmek için bir kamyon ölçekli model kullandıktan sonra, yük aynı kalsa bile, daha yüksek ağırlık merkezine sahip bir kamyonun daha kolay yuvarlandığını kanıtlamak için kontrollü bir deney yaparlar. Bu çalışmanın başarısı, devrilme kazalarını önlemek için yeni olanaklar sunmaktadır. Bu çalışmanın meyveleri, ulaştırma endüstrilerinin sürdürülebilir kalkınmasına da katkıda bulunabilir.

EFFECTS OF CENTER OF GRAVITY POSITION ON ROLLOVER BASED UPON DETECTION OF THREE-DIMENSIONAL CENTER OF GRAVITY

Preventing truck rollover accidents is of great importance to ensure traffic safety, which is United Nations Sustainable Development Goal (SDG) Number 9. It is a misunderstanding of rollover accidents that trucks with heavier loads are more likely to roll over. In fact, when a truck passes through a curve, the truck will tend to roll over if the centrifugal force moment is greater than the gravitational moment. Even if the truck's speed is low and the load is not heavy, if the center of gravity (COG) is high, then the centrifugal torque will be strong. Therefore, finding the COG position is important. Trucks usually carry multiple types of cargo simultaneously. Each type of cargo has different quantity and volume. Considering the time and economic costs, it is almost impossible to find the position of COG of the entire truck through piece-by-piece calculation. But Detection of the Three-Dimensional Center of Gravity (D3DCG) can indicate the COG position in a short time when a truck is moving. This paper first introduces the principle of truck rollover, showing that whether a truck rolls over is related to the curve radius, speed, COG height, and the distance between the wheels on both sides. Secondly, results of this study demonstrate the theory of D3DCG which can calculate the COG position based upon the natural frequency of the moving truck. Then, after the authors use a truck scale model to verify the D3DCG accuracy, they conduct a controlled experiment to prove that even if the load remains the same, a truck with higher COG rolls over more easily. The achievement of this study presents new possibilities to prevent rollover accidents. Fruits of this study can also contribute to sustainable development of transportation industries.

___

  • [1] Chen, B., and Peng, H. (1999). Rollover warning of articulated vehicles based on a Time-To-Rollover metric. Proceedings of the 1999 ASME International Congress and Exposition, Knoxville, TN, November 1999.
  • [2] Dang, R., and Watanabe, Y. (2016). Three-Dimensional Center of Gravity for Trucks Hauling Marine Containers. Journal of Engineering Research and Applications, 6(1), 27-34.
  • [3] Fan, L., Li, G. Y., Chen, R., Hu, D. W., Zhao, L., and Hu, L. H. (2016). Speed calculation model and simulation of rollover prevention in condition of extreme turn based on lateral force coefficient. Transactions of the Chinese Society of Agricultural Engineering, 32(3), 41-47.
  • [4] He, J. L., Gong, B., Zhu, T., Yang, C. X., and Sun, Y. F. (2017). Critical safety speed model of corners based on road geometry parameters. Journal of Changsha University of Science and Technology (Natural Science), 14(4), 75-82.
  • [5] Huang, Y., Jiang, G. L., Sun, Z., Duan, W. J., and Tuo, Y. H. (2009). Research on Vehicle Speed Precaution System Set on Highway Curve Based on Image Processing Technology. Journal of Shandong Jiaotong University, 17(4), 23-27.
  • [6] Iranitalab, A., Khattak, A., and Bahouth, G. (2020). Statistical modeling of cargo tank truck crashes: Rollover and release of hazardous materials. Journal of Safety Research, 74, 71-79.
  • [7] Kawashima, S., and Watanabe, Y. (2016). Center of gravity detection for railway cars. Open Journal of Mechanical Engineering (OJME), 1(1), 8-11.
  • [8] Lang, M. X., Peng, Y. Z., and Liu, C. Q. (2010). Influence of gravity center height on running safety of loaded double-stack container car. Journal of Traffic and Transportation Engineering, 10(6), 41-47.
  • [9] McKnight, A. J., and Bahouth, G. T. (2008). Analysis of Large Truck Rollover Crashes. Annals of Advances in Automotive Medicine, 52, 281-288.
  • [10] Mikata, Y., Yamanaka, M., Kameoka, K., Okunosono, A., and Kinoshita, T. (2011). Measuring the center of gravity with truck scale, Proceedings of SICE Annual Conference 2011, 405-410.
  • [11] Ministry of Land, Infrastructure, Transport and Tourism. (2020). Annual report on automobile accident statistics for automobile transportation business (Information on the safety of automobile transportation) (First year of Reiwa), Japanese Government, 1-75.
  • [12] Rogers, S., and Zhang, W. (2003). Development and evaluation of a curve rollover warning system for trucks. Institute of Electrical and Electronics Engineers (IEEE), 294-297.
  • [13] Ryu, Y. I., Kang, D. O., Heo, S. J., and In, J. H. (2010). Rollover Mitigation for a Heavy Commercial Vehicle. International Journal of Automotive Technology, 11(2), 283-287.
  • [14] Suetake, Y., Oya, M., Shu, P., and Zhuo, J. (2014). Adaptive rollover prevention controller for driver–vehicle systems. Artif Life Robotics, 19, 9-15.
  • [15] Sun, C., Wu, C. Z., Chu, D. F., Fu, Y. H., and Cui, H. L. (2015). Improved Model Study of Safety Speed Calculation in Curves. China Journal of Highway and Transport, 28(8), 101-108.
  • [16] Watanabe, Y. (2017). Three-Dimensional Center of Gravity Detections for Preventing Rollover Accidents of Trailer Trucks Hauling Containers. Open Journal of Mechanical Engineering (OJME), 2(1), 11-14.
  • [17] Wu, X. H., Ge, X. H., Luo, S. Y., and Huang, H. W. (2014). Study on Stability of Rollover of Vehicle. Journal of Xiamen University (Natural Science), 49(6), 815-818.
  • [18] Yang, Y., and Qiu, X. (2019). The conditions and influencing factors of trucks’ roll-over during turning. Mechanics in Engineering, 41 (4), 393-397.
  • [19] Yu, G. Z., Li, Q., Wang, Y. P, and Wang, D. (2014). Roll Stability and Early-warning of Vehicle Driving in the Curve. Journal of Beijing University of Technology, 40(4), 574-579.
  • [20] Zhu, T., and Zong, C. (2009). Research on Heavy Truck Rollover Prevention Based on LMI Robust Controller. 2009 IITA International Conference on Control, Automation and Systems Engineering, 167-170.