Serpantin ekolojisi ve Türkiye serpantin florası’na katkılar

Türkiye’nin floristik çeşitliliğinin en önemli nedenlerinden bazıları, edafik, jeolojik ve jeomorfolojik çeşitlilik ve farklı topoğrafik yapılardır. Serpantin, jips gibi minerallerce zengin kayaçlar üzerinde gelişen topraklarda endemizmin yoğun olması “jeolojik izolasyon” ile açıklanmakta, bu bölgeler “jeolojik ada” ya da “edafik ada” olarak adlandırılmaktadır. Serpantinli kayaçlardan gelişen topraklar bitki gelişimi için ekstrem habitatlardır. Bu ekstrem habitat koşulları floristik çeşitlilik açısından, özellikle endemik ve nadir taksonlar açısından son derece zengindir. Serpantin habitatlarda uzmanlaşmış türler, bu yoğun stres faktörlerine karşı adaptasyonlar geliştirerek hayatta kalmaktadır. Serpantin sistemlerin ekolojisi, biyoçeşitliliğin sürdürülebilirliği ve türlerin korunabilmesi açısından büyük önem taşımaktadır.

Serpentine ecology and contributions to the serpentine flora of Turkey

Some of the most important reasons for the floristic diversity of Turkey are the edaphic, geological and geomorphogical diversity and different topographical structures. The fact that there is an extensive endemism on the land developed from the gypsum and serpentine rocks with extreme conditions is explained by the ‘’geological isolation’’ and these regions are called “geologic island“ or “edaphic island”. Serpentine soils are extreme habitats for plants. These extreme habitat conditions are rich with floristic diversity, especially endemic and rare taxa. The species which are specialist for serpentine habitats can survive by developing adaptations toward these intense stress conditions. The ecology of serpentine systems have a significant importance for the sustainability of biodiversity and preservation of species.

___

  • Adıgüzel N, Reeves RD, 2002. A new nickel-acumulating species of Alyssum (Cruciferae) from westernTurkey. Edinburgh Journal of Botany 59: 215-219 Anonim. 2015a. http://www.metroactive.com/papers Anonim. 2015b. http://www.turkiyebitkileri.com Anonim. 2015c. http://geologie.vsb.cz Avcı M, 2005. Diversity and endemism in Turkey’s vegetation. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi 13: 27-55 Aytac Z, Türkmen Z, 2011. A new Onosma (Boraginaceae) species from southern Anatolia, Turkey. Turkish Journal of Botany 35(3), 269-274 Aytaç Z, Kandemir A, Fişne A, 2015. Silene kemahensis (Caryophyllaceae): Erzincan (Türkiye)’dan yeni bir Nakılçiçeği (Silene L.) türü. Bağbahçe Bilim Dergisi 2 (1):37-42 Baker AJM, Brooks RR, 1989. Terrestrial higher plants which hyperaccumulate metal- lic elements-A review of their distribution, ecology and phytochemistry. Biorecovery 1:81-126 Baker AJM, Proctor J, van Balgooy MMJ, Reeves RD, 1992. Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. In: Baker AJM, Proctor J, Reeves RD, eds. The vegetation of ultramafic (serpentine) soils. Andover, UK: Intercept Ltd. 291–304. Barro CB, Alejandro RNÁ, Krys RF, 2004. The Lepidoptera of plant formations on Cuban ultramafics: A preliminary analysis. In Ultramafic rocks: Their soils, vegetation and fauna; Proceedings of the Fourth International Conference on Serpentine Ecology, 21–26 April 2003. Edited by Robert S. Boyd, Alan J. M. Baker and John Proctor, 223–226. St. Albans, UK: Science Reviews Batianoff GN, Singh S, 2001. Central Queensland serpentine landforms, plant ecology and endemism. South African Journal of Science 97(11-12): 495-497. Boyd RS, Martens SN, 1998. The significance of metal hyperaccumulation for biotic inter- actions. Chemoecology 8:1-7 Boyd RS, Jaffré T, 2001. Phytoenrichment of soil Ni content by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy. South African Journal of Science 97: 535-38 Boyd RS, Robert S, 2009. High-nickel insects and nickel hyperaccumulator plants: A review. Insect Science 16(1): 19–31 Brady KU, Kruckeberg AR ve Bradshaw HD Jr, 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics 36:243–266 Branco S, Sand RHR, 2010. Serpentine soils do not limit mycorrhizal fungal diversity. PLoSONE 5.7: e11757 Briscoe LRE, Harris TB, Broussard W, Dannenberg E, Olday FC ve Rajakaruna N, 2009. Bryophytes of adjacent serpentine and granite outcrops on the Deer Isles, Maine, U.S.A. Rhodora 111.945: 1–20 Brooks RR, 1987. Serpentine and its Vegetation: A Multidisciplinary Approach. Dioscorides Press, Portland, OR Brown JH, 1995. Macroecology. Univ. of Chicago Press, Chicago Cardace D, Hoehler TM, 2011. Microbes in extreme environments: Implications for life on the early Earth and other planets. In Serpentine: The evolution and ecology of a model system. Edited by Susan P. Harrison and Nishanta Rajakaruna, 29–48. Berkeley: Univ. of California Press Celik N, Akpulat HA, 2008. Achillea sivasica (Asteraceae: sect. Babounya (DC.) O. Hoffm.), a new species from inner Anatolia, Turkey. Kew Bulletin 63(3): 485-489 Çetin O, Duran A, Martin E, Tustas S, 2012. A taxonomic study of the genus Fibigia Medik.(Brassicaceae). African Journal of Biotechnology 11(1): 109-119 Chazeau J, 1997. Caractères de la faune de quelques milieux naturels sur sols ultramafiques en Nouvelle-Calédonie. In Écologie des milieux sur roches ultramafiques. Coşkunçelebi K, Makbul S, Gültepe M, Onat D, Güzel ME, Okur S, 2012. A new Scorzonera (Asteraceae) species from South Anatolia, Turkey, and its taxonomic position based on molecular data. Turkish Journal of Botany 36(4): 299-310 Darwin C, 1859. On the Origin of Species by Means of Natural Selection, or The Preser- vation of Favoured Races in the Struggle for Life. New York: Mentor. 495 pp Davis MA, Boyd RS, Cane JH. 2001. Host- switching does not circumvent the Ni-based defense of the Ni hyperaccumulator Strep- tanthus polygaloides (Brassicaceae). South African Journal of Science 97:554-57 Deniz İG, Aykurt C, Genç İ, Aksoy A, 2016. A new species of Dianthus (Caryophyllaceae) from Antalya, South Anatolia, Turkey. PhytoKeys, 63, 1 Dogan B, Duran A, Hakki EE, 2010. Jurinea tortumensis sp. nov.(Asteraceae) from northeast Anatolia, Turkey. Nordic Journal of Botany 28(4): 479-483 Dogan B, Behçet L, Duran A, Avlamaz D, 2015. Psephellus vanensis (Asteraceae), a new species from east Turkey. PhytoKeys 48: 11 Duran A, Hamzaoglu E, 2004. A new species of Scorzonera (Asteraceae) from South Anatolia, Turkey. Biologia-Bratislava 59(1): 47-50 Eker I, Koyuncu M, 2008. Muscari babachii sp. nov.(Hyacinthaceae) from south Anatolia. Nordic Journal of Botany 26(1‐2): 49-52. Ekşi G, Koyuncu M, Bona M, 2015. Allium phanerantherum subsp. involucratum (Amaryllidaceae), a new subspecies from Turkey. Bangladesh Journal of Plant Taxonomy 22(2): 143-146 Freitag H, Özhatay E, 1997. A new subspecies of Salsola canescens (Chenopodiaceae) from SW Anatolia, Turkey. Willdenowia 185-190 Futuyma DJ, Moreno G, 1988. The evolution of ecological specialization. Annual Reviews Ecology and Systematics 19: 207–233 Gall JE, Rajakaruna N, 2013. The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In Brassicaceae: Characterization, functional genomics and health benefits. Edited by Minglin Lang, 121–148. Hauppauge, NY: Nova Science Gaston KJ, Blackburn TM, 2000. Pattern and Process in Macroecology. Blackwell Science, Oxford. Genç İ, Özhatay N, 2013. Allium serpentinicum and A. kandemirii (Alliaceae), two new species from East Anatolia, Turkey. In Annales Botanici Fennici, Finnish Zoological and Botanical Publishing Board 50: 50-54 Gordon A, Lipman CB, 1926. Why are serpentine and other magnesian soils infertile? Soil Science 22:291-302 Gustafson DJ, Casper BB, 2004. Nutrient addition affects AM fungal performance and expression of plant/fungal feedback in three serpentine grasses. Plant and Soil 259(1–2): 9–17 Gültepe M, Coşkunçelebi K, Makbul S, Sağlam C, 2015. Tragopogon turcicus sp. nov.(Asteraceae) from Turkey and its phylogenetic position. Nordic Journal of Botany 33(5): 540-547 Hamzaoğlu E, Koç M, Budak Ü, 2013. Galatella anatolica sp. nov.(Asteraceae: Astereae) from Osmaniye, Turkey. Nordic Journal of Botany 31(1): 087-089 Hamzaoğlu E, Koç M, Aksoy A, 2014. A new pricking Carnation (Caryophyllaceae) grows on tuff from Turkey: Dianthus aculeatus sp. nov. Biodicon 7(2): 159-162 Hamzaoğlu E, Koç M, Büyük İ, Aksoy A, Soydam Aydın A, 2015. A new serpentine-adapted carnation (Caryophyllaceae) from Turkey: Dianthus serpentinus sp. Nov. Nordic Journal of Botany 33:57-63 Hamzaoğlu E, Koç M, Aksoy A, 2015. Dianthus aticii, a new species from Turkey (Caryophyllaceae). PhytoKeys (48): 21 Harrison S, 1997. How natural habitat patch- iness affects the distribution of diversity in Californian serpentin chaparral. Ecology 78:1898-1906 Harrison S, 1999. Local and regional diversity in a patchy landscape: native, alien, and en- demic herbs on serpentine. Ecology 80: 70- 80 Hirth G, Guillot S, 2013. Rheology and tectonic significance of serpentinite. Elements 9(2): 107–113. Hoşgören MY, 2000. Jeomorfolojinin Ana Çizgileri I, Rebel yayıncılık, İstanbul Iturralde RB, 2001. The influence of ultramafic soils on plants in Cuba. South African Journal of Science 97:510- 12 Jaffré T, 1980. Étude écologique du peuplement végétal des sol dérivés de roches ultrabasiques en Nouvelle Calédonie. Travaux et Documents de L’ORSTOM 124. Paris: ORSTOM. Jenny H, 1980. The Soil Resource: Origin and Behavior. New York: Springer-Verlag. 377 pp Kantarcı D, 1987. Toprak İlmi, İstanbul Üniversitesi Orman Fakültesi yayını, İstanbul Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD ve Troumbis AY, 2008. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: From species to ecosystem level. Biological Reviews 83(4): 495–508 Koç M, Hamzaoğlu E, 2016. Eremogone ali-gulii (Caryophyllaceae), a new species from Turkey. PhytoKeys (61), 93 Krause W, 1958. Andere Bodenspezialisten. In Handbuch der Pflanzenphysiologie, ed. G Michael, 4:758-806. Berlin: Springer-Verlag Kruckeberg AR, 1954. The ecology of serpentine soils: A symposium. III. Plant species in relation to serpentine soils. Ecology 35:267- 74 Kruckeberg AR, 1985. California Serpentines: Flora, Vegetation, Geology, Soils, and Management Problems. Berkeley: Univ. Calif. Press. 180 pp Kruckeberg AR, 2002. The influences of lithology on plant life. In Geology and Plant Life: The Effects of Landforms and Rock Type on Plants, pp. 160-81. Seattle/London: Univ. Wash. Press. 362 pp. Kruckeberg A., Adıgüzel N, Reeves RD, 1999. Glimpses of the flora and ecology of Turkish (Anatolian Species), The Karaca Arboretum Magazine 5 (2): 67-86 Kurt L, Ozbey BG, Kurt F, Ozdeniz E. Bolukbaşı A, 2013. Serpentine Flora of Turkey. Biological Diversity and Conservation 6(1): 134-152 Kültür Ş, 2010. Centaurea nerimaniae sp. nov.(Asteraceae) from south Anatolia, Turkey. Nordic Journal of Botany 28(5): 613-616. Kültür Ş, Bona M, Nath EÖ, 2016. A new species of Centaurea (Asteraceae) from East Anatolia, Turkey. Maas JL, Stuntz DE, 1969. Mycoecology on serpentine soil. Mycologia 61(6): 1106–1116 Mengoni A, Schat H, ve Vangronsveld J, 2010. Plants as extreme environments? Ni-resistant bacteria and Nihyperaccumulatohyperaccumulators of serpentine flora. Plant and Soil 331(1–2): 5–16 Oline DK, 2006. Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils. Applied and Environmental Microbiology 72(11): 6965–6971 Pichi-Sermolli R, 1948. Flora e vegetazione delle serpentine e delle alter ofioliti dell'alta valle del Trevere (Toscana). Webbia 6:1-380 Porter SS, 2013. Adaptive divergence in seed color camouflage in contrasting soil environments. New Phytologist 197(4): 1311–1320 Proctor J, Woodell SRJ, 1975. The ecology of serpentine soils. Advances in Ecological Research 9: 255–366 Rajakaruna N, 2004. The edaphic factor in the origin of plant species. International Geology Review 46: 471–478 Rajakaruna N, Kerry K, Alan MF, 2012. Investigation of the importance of rock chemistry for saxicolous lichen communities of the New Idria serpentinite mass, San Benito County, California, USA. Lichenologist 44(5): 695–714 Rajakaruna N, Boyd RS, 2014. Serpentine Soils. In: Oxford Bibliographies in Ecology. Ed. David Gibson. New York: Oxford University Press Rascio N, Navari-Izzo F, 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science 180.2: 169–181 Reeves RD, Baker AJM, Borhidi A, Berazain R, 1999. Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany 83(1), 29-38 Reeves RD, Kruckeberg AR, Adıgüzel N, Krımer U, 2001. Studies on the fl ora of serpentine and other metalliferous areas of western Turkey. South African Journal of Sciences 97: 513-517 Reeves RD, Adıgüzel N, 2004. ‘’Rare Plants and Nickel Accumulators from Turkish Serpentine Soils, with Special Reference to Centaurea Species’’. Turkish Journal of Botany 28:147-153 Ritter-Studni'ka H, 1968. Die serpentinomor- phosen der flora bosniens. Bot. Jahrb. 88: 443-65 Rune O, 1953. Plant life on serpentines and related rocks in the north of Sweden. Acta Phytogeogr Suec 31: 1-139 Schluter D, 2001. Ecology and the origin of species. Trends in Ecology and Evoluation 16: 372-80 Springer YP. 2009. Do extreme environments provide a refuge from pathogens? A phylogenetic test using serpentine flax. American Journal of Botany 96(11): 2010–2021 Stevens GC, 1989. The latitudinal gradient in geographial range: how so many species coexist in the tropics. American Naturalist 133: 240-256 Takai, KCLM ve Miyazaki M, 2005. Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles 9.1: 17–27 Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, ve Nuzhdin SV, 2010. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics 42(3): 260–263 Vlamis J, Jenny H, 1948. Calcium deficiency in serpentine soils as revealed by absorbent technique. Science 107:549-51 Vlamis J, 1949. Growth of lettuce and barley as influenced by degree of calcium saturation of soil. Soil Science 67: 453-66 Yildirim H, ŞENOL SG, Pirhan AF, 2012. Pinguicula habilii (Lentibulariaceae), a new carnivorous species from South-West Anatolia, Turkey. Phytotaxa 64(1): 46-58 Yıldırım H, Gemici Y, Altıoğlu Y, 2014. Scilla arsusiana ve Scilla albinerve (Asparagaceae alt familya Scilloideae): Güney Anadolu'dan iki yeni Sümbülcük (Scilla L.) türü. Bağbahçe Bilim Dergisi 1(2): 37-49 Yıldırım H, Altıoğlu Y, Pirhan AF, 2015. Muscari serpentinicum sp. nova (Asparagaceae): a new species from western Anatolia, Turkey. Ot Sistematik Botanik Dergisi 21 (1): 1–14 Walker RB, 1948. A study of serpentine soil infertility with special reference to edaphic endemism. Ph.D. Thesis. Univ. Of California, Berkeley. Walker RB, Walker HM, Ashworth PR, 1955. Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiology 30: 214-21 Walker RB, 1954. The ecology of serpentine soils: A symposium. II. Factors affecting plant growth on serpentine soils. Ecology 35: 259-66 Wallace AR, 1858. On the tendency of varieties to depart indefinitely from the original type. J. Proc. Linn. Soc. Zool. 3: 53-62 Wallace DR. 1983. The Klamath Knot: Explorations of Myth and Evolution. San Francisco: Sierra Club Books. 149 pp Whittaker RH, 1954. The ecology of serpentine soils: A symposium. I. Introduction. Ecology 35: 258-59 Wild H. 1975. Termites and the serpentines of the Great Dyke of Rhodesia. Transactions of the Rhodesia Scientific Association 57(1): 1–11 Wu CA., Lowry DB, Cooley AM, Wright KM, Lee YW ve Willis JH. 2008. Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity 100(2): 220–230