Katı ortam kültüründe hümik asitin artan NaCI stres şartlarında domates bitkisi yaprağında makro ve mikro element kapsamlarına etkisi

Çalışmanın amacı artan NaCI stres şartlarında besin çözeltisine ilave edilen hümik asitin (HA) domates bitkisi yaprağında bazı element kapsamlarına etkilerini belirlemektir. NaCl’ün 0, 44,4 ve 70,4 mM dozlarında 0, 320, 640 ve 1280 ppm HA ilave edilerek 12 farklı besin çözeltisi hazırlanmıştır. Her besin çözeltisi 3 tekerrürlü uygulanmıştır. Denemede 1:1 torf: perlit karışımından her saksı için 770 gram alınıp 3 litrelik saksılara konulmuştur. Her saksıya bir domates (Tybiff Aq Tohum çeşidi) fidesi dikilmiştir. Denemede makro ve mikro element içerikli besin çözeltisi hergün dikimden çiçeklenme dönemine kadar 100 ml; çiçeklenmeden hasata kadar ise 200 ml uygulanmıştır. Hasatta alınan yaprak örneklerinde N, P, Mg, S, Fe, Mn, Zn ve Cu, B analizleri yapılmıştır. Hümik asit yaprakta N ve Cu kapsamını önemli derecede azaltmış, P ve S kapsamını değiştirmemiş, Fe ve B kapsamını önemli derecede arttırmıştır. NaCl yaprakta N, P ve Zn kapsamını arttırmış; S, Cu ve B kapsamı önemli derecede azaltmıştır. HA x NaCl interaksiyonun yaprakta N, P, S, Cu ve B kapsamlarına etkisi istatistiksel olarak önemli bulunmamıştır. Fakat besin çözeltisine artan dozlarda ilave edilen HA’in domates yaprağında Mg, Fe, Mn ve Zn kapsamına etkisi besin çözeltisinde bulunan NaCl seviyelerine bağlı bulunmuştur. NaCl:0 iken HA yaprakta Mg kapsamını azaltmıştır. Fakat NaCl: 70,4 mM iken HA dozu arttıkça yaprakta Mg kapsamı önemli derecede artış göstermiştir. NaCl’nin yüksek seviyelerinde HA yüksek dozları yaprakta Fe kapsamını arttırarak, olumlu etki sağladığı görülmüştür. NaCl:0 iken HA dozu arttıkça yaprakta Mn kapsamı azalma göstermiştir. NaCl: 44,4 mM iken HA dozu arttıkça yaprakta Mn kapsamı artış göstermiş; fakat bu artış önemli bulunmamıştır. NaCl:0 iken 640 ppm HA uygulaması yaprakta çinko kapsamını önemli derecede azalttığı halde, 44,4 mM NaCl seviyesinde HA dozu arttıkça yaprakta çinko kapsamı artış göstermiş ve bu artış 640 ppm HA dozunda önemli bulunmuştur. Fakat NaCl 70,4 mM iken HA’in yaprakta çinko kapsamına etkisi önemli bulunmamıştır

Effect of humic acid on macro and micro nutrients in tomato plant leaf in solid media culture under increasing NaCl stress conditions

The objective of this study was to determine the effect of humic acid (HA) added into nutrient solution on macro and micro nutrients in tomato plant leaf under increasing NaCl stress conditions. Twelve different nutrient solutions were prepared adding 0, 320, 640 and1280 ppm HA at 0, 44.4 and 70.4 mM doses of NaCl. Each nutrient solution was applied with three replicates. In the experiment, 770 g of 1:1 ratio of peat : perlite mixture was packed into 3 L pots. A tomato (Tybiff Aq Seed variety) seedling was planted in each pot. During the experiment, macro and micro nutrient solutions was applied every day as 100 ml from sowing to flowering time and 200 ml from flowering period to harvesting time. In leaf samples taken in harvesting time, N, P, Mg, S, Fe, Mn, Zn, Cu and B analyses were done. Humic acid significantly decreased N and Cu content in leaves, did not change P and S contents, and significantly increased Fe and B contents in leaves. NaCl increased N, P and Zn contents in leaves, significantly decreased S, Cu and B contents. The effects of HA x NaCl interaction on N, P, S, Cu and B contents were not significant statistically. But, the effects of HA added into nutrient solution with increasing doses on Mg, Fe, Mn and Zn contents of tomato leaves were depend on the NaCl levels in nutrient solutions. Humic acid decreased Mg content in leaf at NaCl:0 level. But, increasing HA doses at NaCl:70.4 mM significantly increased Mg content in leaf. Higher doses of HA at higher NaCl levels had positive effects with increasing Fe content in leaf. Increasing Ha doses at NaCl:0 decreased Mn content in leaf. Increasing Ha doses at NaCl:44.4 mM increased Mn content in leaf, but it was not significant. While 640 ppm HA application at NaCl:0 significantly decreased Zn content in leaf, 640 ppm HA application at NaCl:44.4 mM level significantly increased Zn content in leaf. But, effect of HA on leaf Zn content at NaCl:70.4mM was not significant

___

  • Akıncı Ş, Büyükkeskin T, Eroğlu A, Erdoğan BE. 2009. The effect of humic acid on nutrient composition in Broad Bean (Vicia faba L.) Roots, Notulae Scientia Biologicae 1(1):81-87.
  • Alpaslan M, Güneş A., Taban, S., Erdal, İ. ve Tarakcıoğlu, C., 1998. Tuz stresinde çeltik ve buğday çeşitlerinin kalsiyum, fosfor, demir, bakır, çinko, ve mangan içeriklerindeki değişmeler. Turkish Journal of Agriculture and Forestry 22: 227-233.
  • Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD, 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth, Bioresource Techonology 84: 7-14.
  • Averett RC, Leenheer JA, Mcknight DM, Thorn KA. 1995. Humic substances in the suwanee river, Georgia : Interaction , properties and proposed strucures, USGS Water supply paper 2373, 224 pp.
  • Bayraklı F.1987. Toprak ve bitki analizleri. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi. Yayın No:17, Samsun.
  • Bloom-Zandstra, G. Ve J.E.M. Lampe (1983). The effect of chloride and sulphate salts on the nitrate content in lettuce plants Lettuce sativa L. Journal of Plant Nutrition 6:611-628.
  • Botella MA, Rosado A, Bressan RA, Hasegawa PM, 2005. Plant Adaptive Responses to Salinity Stress. Plant Abiotic Stress, Blackwell Publishing Ltd., 270p.
  • Cerda A, Pardines J, Botella MA, Martinez V. 1995. Osmotic sensitivity in relation to salt sensitivity in germination of barleyseeds. Plant, Cell and Environment 9: 721-725
  • Chavan PD, Karadge BA. 1980. Influence of salinity on mineral nutrition of peanut (Arachis hyogea L.). Plant and Soil, 54: 5-13.
  • Chen Y, Aviad T. 1990. Effects of humic substances on plant growth. In: Humic substances in soil and crop science: selected readings. P MacCarthy et al. (eds.). SSSA and ASA, Madison, Wisconsin, USA. pp. 161-186.
  • Clapp CE, Chen Y, Hayes MHB, Cheng HH. 2001. Plant growth promoting activity of humic substances, In: Understanding and Managing Organic Matter in Soils, Sediments, and Waters. RS Swift, KM Sparks (eds.), International Humic Science Society, Madison, pp. 243–255.
  • Courpron C. 1967. Determination des contentes de stabilite des complexes organo-metalliques des sols. Annals of Agronomy 18(6):623-638.
  • Dajic Z. 2006. Salt stress. In: Physiology and molecular biology of stress tolerance in plants. Dordrecht, The Netherlands, 345p.
  • De Mumbrun LE, Jackson ML. 1956. Infrared absorption evidence on exchange reaction mechanism o f copper and zinc with layer clays and peat. Soil Science 81, 334.
  • Dell’Amico C, Masciandaro G, Ganni A, Ceccanti, B, Garcia C, Hernandez T, Costa F. 1994. Effects of specific humic fractions on plant growth. In: Humic substances in the global environment and ımplications on human health. N Senesi, TM Milano (eds.).
  • Elsevier Science; Amsterdam, The Netherlands, pp. 563-566.
  • Esmaili EE, Kapourchal SA, Malakouti MJ, Homaee M. 2008. Interactive effect of salinity and two nitrogen fertilizers on growth and composition of sorghum. Plant Soil and Environment 54 (12): 537–546.
  • Fagbenro JA, Agboola AA. 1993. Effect of different levels of humic acid on the growth and nutrient uptake of teak seedlings. Journal of Plant Nutrition 16: 1465-1483.
  • Frechilla S, Lasa B, Ibarretxe L, Lamsfus C, Aparicio-Tejo P. 2001. Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regulation 35:171-179.
  • Garcia C, Hernandez T, Costa F, Ceccanti B, Dell’Amico C. 1992. Characterization of the organic fractions of an uncomposted and composted sewage sludge by ısoelectric focusing and gel-filtration. Biology and Fertility of Soils 13:112-118.
  • Grattan SV, Grieve CM. 1999. Mineral nutrient acquisition and response by plants grown in saline environments. In: Handbook of plant and crop stress. M Pessarakli (ed.). Marcel Dekker, New York, USA. pp.203-229.
  • Gupta UC. 1979. Boron Nutrition of Crops. Advances in Argonomy 31: 273-307.
  • Gül, A., 2012. Topraksız Tarım. Hasad Yayıncılık 2. Baskı.
  • Gürel A, Avcıoğlu R. 2001. Bitkilerde strese dayanıklılık fizyolojisi. In: Bitki Biyoteknolojisi II, Genetik Mühendisliği ve Uygulamaları. S Özcan, E Gürel, M Babaoğlu (eds.). Selçuk Üniversitesi Vakfı Yayınları. s.308-313
  • Hasan NAK, Drew JW, Knudsen D, Olson RA. 1970. Influence of soil salinity on production of dry matter and uptake and distribution of nutrients in barley and corn: II. Corn (Zea mays L.), Agronomy Journal 62: 46-48.
  • Heintze SG, Mann PJG. 1949. Studies on soil manganese.Part I.Pyrophosphate as extractant of soil manganese. Journal of Agricultural Science 39: 80-85.
  • Hochmuth G, Maynard D, Vavrina C, Hanlon E, Simonne E. 2004. Plant tissue analysis and interpretation for vegetables crops in Florid. University of Florida Institute of Food and Agricultural Sciences. Available at:
  • Hong CY, Chao YY, Yang MY, Cho SC, Kao CH. 2009. Na+ But Not Cl- or Osmotic Stress is involved in NaCl Induced Expression of Glutathione Reductase in Roots of Rice Seedlings, Journal of Plant Physiology 166: 1598-1606.
  • http://edis.ifas.ufl.edu/pdffiles/ep/ep08100.pdf Kacar B, İnal A. 2008. Bitki Analizleri. Nobel Yayıncılık, No:1241, Fen Bilimleri: 63, Ankara.
  • Kacar B, Katkat VA. 2010. Bitki Besleme. Nobel Yayıncılık, No:849, Fen Bilimleri: 30, Ankara