Effect of meteorological factors on the daily average levels of particulate matter in the Eastern Province of Saudi Arabia: A Cross-Sectional Study

Effect of meteorological factors on the daily average levels of particulate matter in the Eastern Province of Saudi Arabia: A Cross-Sectional Study

Particulate matter (PM) is a key indicator of air pollution. Particles with an aerodynamic diameter less than 10 µ (PM10), and 2.5 µ (PM2.5); are inhaled and deposited in the respiratory system. The fate of air pollutants, including PM, is highly dependent on meteorological parameters as they control natural emissions, transport, chemistry and deposition. This study was a cross-sectional one aimed at assessing the effect of meteorological factors on the daily average levels of PM in the Eastern Province of Saudi Arabia during year 2012. Two monitoring stations with the HORRIBA APDA-371 Continuous Particulate Monitors were distributed in Dammam and Khobar governorates for incessantly recording the hourly ambient levels of PM10and PM2.5. Simultaneously, the meteorological parameters (wind speed, wind direction, air temperature, relative humidity, barometric pressure, and precipitation) were recorded by the WS600-UMB weather parameters’ sensor. The daily average levels PM10, and PM2.5exceeded the U.S. National Ambient Air Quality Standards (NAAQS) for 19.5%, and 45.8% in the Dammam station measurement days and 27.1% and 36.1% in the Khobar measurement days respectively. They were correlated positively with wind speed and air temperature. Their relationships with wind direction, relative humidity, atmospheric pressure, and precipitation were negative

___

  • Al-Homaidan, A. A. (2008). Accumulation of nickel by marine macroalgae from the Saudi coast of the Arabian Gulf. Journal of Food Agricultura and Environment, 6(1), 148.
  • Ali, K., Budhavant, K. B., Safai, P. D., & Rao, P. S. P. (2012). Seasonal factors influencing in chemical composition of total suspended particles at Pune, India. The Science Of The Total Environment, 414, 257-267. doi: 10.1016/j.scitotenv.2011.09.011
  • Bogo, H., Otero, M., Castro, P., Ozafrán, M. J., Kreiner, A., Calvo, E. J., & Negri, R. M. n. (2003). Study of atmospheric particulate matter in Buenos Aires city. Atmospheric Environment, 37(8), 1135-1147. doi: 10.1016/s1352-2310(02)00977-9
  • Chan, C. K., & Yao, X. (2008). Air pollution in mega cities in China. [Article]. Atmospheric Environment, 42(1), 1- 42. doi: 10.1016/j.atmosenv.2007.09.003
  • Chan, L. Y., & Kwok, W. S. (2001). Roadside suspended particulates at heavily trafficked urban sited of Hong Kong — Seasonal variation and dependence on meteorological conditions. [Article]. Atmospheric Environment, 35(18), 3177.
  • Cheung, H.-C., Wang, T., Baumann, K., & Guo, H. (2005). Influence of regional pollution outflow on the concentrations of fine particulate matter and visibility in the coastal area of southern China. [Article]. Atmospheric Environment, 39(34), 6463-6474. doi: 10.1016/j.atmosenv.2005.07.033
  • CPCB. (2011). Guidelines for the Measurement of Ambient Air Pollutants Vol. Volume II. M. o. E. F. Central Pollution Control Board, Govt. of India (Ed.) Guidelines for Real Time Sampling & Analyses Retrieved from http://cpcb.nic.in/NAAQSManualVolumeII.pdf
  • Dayan, U., Erel, Y., Shpund, J., Kordova, L., Wanger, A., & Schauer, J. J. (2011). The impact of local sources and meteorological factors on nitrogen oxide and particulate matter concentrations: A case study of the Day of Atonement in Israel. [Article]. Atmospheric Environment, 45(19), 3325-3332. doi: 10.1016/j.atmosenv.2011.02.017
  • El-Sharkawy, M. F., & Zaki, G. R. (2012). Traffic pollutants levels at different designs of King Fahd Road, Saudi Arabia: comparative study. The Online Journal of Science and Technology, 2(1).
  • Gugamsetty, B. (2012). Source Characterization and Apportionment of PM10, PM2.5 and PM0.1 by Using Positive Matrix Factorization. Aerosol and Air Quality Research. doi: 10.4209/aaqr.2012.04.0084
  • Hu, M., Jia, L., Wang, J., & Pan, Y. (2013). Spatial and temporal characteristics of particulate matter in Beijing, China using the Empirical Mode Decomposition method. The Science Of The Total Environment, 458-460, 70-80. doi: 10.1016/j.scitotenv.2013.04.005
  • Ielpo, P., Paolillo, V., de Gennaro, G., & Dambruoso, P. R. (2014). PM10 and gaseous pollutants trends from air quality monitoring networks in Bari province: principal component analysis and absolute principal component scores on a two years and half data set. [Article]. Chemistry Central Journal, 8(1), 1-25. doi: 10.1186/1752-153x-8-14
  • Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. [Article]. Atmospheric Environment, 43(1), 51-63. doi: 10.1016/j.atmosenv.2008.09.051
  • Jian, L., Zhao, Y., Zhu, Y.-P., Zhang, M.-B., & Bertolatti, D. (2012). An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. The Science Of The Total Environment, 426, 336-345. doi: 10.1016/j.scitotenv.2012.03.025
  • Marcazzan, G. M., Vaccaro, S., Valli, G., & Vecchi, R. (2001). Characterisation of PM10 and PM2. 5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment, 35(27), 4639-4650.
  • Marcazzan M. Grazia, Vaccaro, S., Valli, G., & Vecchi, R. (2001). Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment, 35, 4639–4650.
  • Mues, A., Manders, A., Schaap, M., Kerschbaumer, A., Stern, R., & Builtjes, P. (2012). Impact of the extreme meteorological conditions during the summer 2003 in Europe on particulate matter concentrations. [Article]. Atmospheric Environment, 55, 377-391. doi: 10.1016/j.atmosenv.2012.03.002
  • Ott;, R. L., & Longnecker., M. (2010). An Introduction to Statistical Methods and Data Analysis (6th Edition ed.). Canada: Brooks/Cole, Cengage Learning.
  • Pandey, P., Patel, D. K., Khan, A. H., Barman, S. C., Murthy, R. C., & Kisku, G. C. (2013). Temporal distribution of fine particulates (PM 2.5, PM 10 ), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. [Article]. Journal of Environmental Science & Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 48(7), 730-745. doi: 10.1080/10934529.2013.744613
  • Peng;, R. D., & Dominici., F. (2008). Statistical Methods for Environmental Epidemiology with R: A Case Study in Air Pollution and Health. Washington: Springer.
  • Qiu, H., Yu, I. T.-S., Tian, L., Wang, X., Tse, L. A., Tam, W., & Wong, T. W. (2012). Effects of coarse particulate matter on emergency hospital admissions for respiratory diseases: a time-series analysis in Hong Kong. Environmental Health Perspectives, 120(4), 572-576. doi: 10.1289/ehp.1104002
  • Reyna, M. A., Bravo, M. E., López, R., Nieblas, E. C., & Nava, M. L. (2012). Relative risk of death from exposure to air pollutants: a short-term (2003–2007) study in Mexicali, Baja California, México. [Article]. International Journal of Environmental Health Research, 22(4), 370-386. doi: 10.1080/09603123.2011.650153
  • Solomon, P. A., Hopke, P. K., Froines, J., & Scheffe, R. (2008). Key Scientific Findings and Policy- and HealthRelevant Insights from the U.S. Environmental Protection Agency's Particulate Matter Supersites Program and Related Studies: An Integration and Synthesis of Results. [Article]. Journal of the Air & Waste Management Association (Air & Waste Management Association), 58, S:3-S:92. doi: 10.3155/1047- 3289.58.13.s-3
  • Tai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976-3984. doi: 10.1016/j.atmosenv.2010.06.060
  • Tian, G., Qiao, Z., & Xu, X. (2014). Characteristics of particulate matter (PM10) and its relationship with meteorological factors during 2001-2012 in Beijing. Environmental Pollution (Barking, Essex: 1987), 192, 266-274. doi: 10.1016/j.envpol.2014.04.036
  • Trivedi, D. K., Ali, K., & Beig, G. (2014). Impact of meteorological parameters on the development of fine and coarse particles over Delhi. [Article]. Science of the Total Environment, 478, 175-183. doi: 10.1016/j.scitotenv.2014.01.101
  • Valavanidis, A., Vlachogianni, T., Fiotakis, K., & Loridas, S. (2013). Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journal Of Environmental Research And Public Health, 10(9), 3886-3907. doi: 10.3390/ijerph10093886
  • Vardoulakis, S., & Kassomenos, P. (2008). Sources and factors affecting PM10 levels in two European cities: Implications for local air quality management. Atmospheric Environment, 42(17), 3949-3963
  • Vellingiri, K., Kim, K.-H., Ma, C.-J., Kang, C.-H., Lee, J.-H., Kim, I.-S., & Brown, R. J. C. (2014). Ambient particulate matter in a central urban area of Seoul, Korea. Chemosphere, 119C, 812-819.
  • Whiteman, C. D., Hoch, S. W., Horel, J. D., & Charland, A. (2014). Relationship between particulate air pollution and meteorological variables in Utah's Salt Lake Valley. [Article]. Atmospheric Environment, 94, 742-753. doi: 10.1016/j.atmosenv.2014.06.012
  • Yang, L.-X., Wang, D.-C., Cheng, S.-H., Wang, Z., Zhou, Y., Zhou, X.-H., & Wang, W.-X. (2007). Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China. The Science Of The Total Environment, 383(1-3), 164-173.
  • Zhang, F., Wang, W., Lv, J., Krafft, T., & Xu, J. (2011). Time-series studies on air pollution and daily outpatient visits for allergic rhinitis in Beijing, China. [Article]. Science of the Total Environment, 409(13), 2486- 2492. doi: 10.1016/j.scitotenv.2011.04.007
  • Zhang, Y., Duc, P. M., Corcho, O., & Calbimonte, J.-P. (2012). Srbench: a streaming rdf/sparql benchmark The Semantic Web–ISWC 2012 (pp. 641-657): Springer.