Peptit terapötikleri ile kanser tedavisi

Özet Peptit terapötikleri, geleneksel küçük moleküllü ilaçlara göre pek çok avantajı bulunmasından dolayı sağlık alanında giderek artan bir ilgi görmektedir. Peptitler, vücutta doğal olarak bulunmaları, geleneksel ilaçların ulaşamayacağı bir düzeyde özgüllükleri, vücuttaki yarı ömürlerinin arttırılabilmesi gibi avantajlara sahiptir. Bu avantajlar, peptit terapötiklerini yeni tedaviler geliştirmek için umut verici bir araştırma alanı haline getirmektedir. Küresel Peptit Terapötikleri pazarına ilişkin bir rapora göre, %6,6’lık büyüme oranıyla sektörün 2030 yılına kadar 69,3 milyar dolara ulaşması bekleniyor [1] . Bu alandaki araştırmalar ilerlemeye devam ettikçe, peptit terapötikleri sağlık hizmetlerinde ve hasta sonuçlarında büyük iyileştirme potansiyeline sahip olacaktır. Terapötik peptitlerin çok yönlülüğü, kanser tedavisinde birden fazla yaklaşıma olanak tanır ve araştırmalar, yenilikçi peptit bazlı tedavilerin geliştirilmesine odaklanmaktadır. Bu derlemede, peptit terapötiklerinin kanserde uygulamaları tartışılmaktadır. İnceleme ayrıca bu alanda kullanılan peptitleri, tasarımı ve geliştirilmesinde ortaya çıkan yeni fırsatları ve kanserde peptit terapötiklerinin geleceğini ortaya koyuyor.

Cancer treatment with peptide therapeutics

Peptide therapeutics are gaining increasing attention in healthcare because of their many advantages over traditional small-molecule drugs. Peptides have advantages such as being naturally present in the body, being specific at a level that traditional drugs cannot reach, and increasing their half-life in the body. These advantages make peptide therapeutics a promising area of research for developing new treatments. According to a report on the global Peptide Therapeutics market, with a growth rate of 6.6%, the industry is expected to reach $69.3 billion by 2030 [1] . As research in this area continues to advance, peptide therapeutics will have the potential to greatly improve healthcare and patient outcomes. The versatility of therapeutic peptides enables multiple approaches to cancer treatment, and research is focused on the development of innovative peptide-based therapies. In this review, the applications of peptide therapeutics in cancer are discussed. The review also highlights the peptides used in this field, emerging opportunities in their design and development, and the future of peptide therapeutics in cancer.

___

  • Lau, J. L., & Dunn, M. K. (2018). Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic & medicinal chemistry, 26(10), 2700-2707.Available at: http://www.sciencedirect.com/science/article/ pii/S0968089617310222
  • Marqus, S., Pirogova, E., & Piva, T. J. (2017). Evaluation of the use of therapeutic peptides for cancer treatment. Journal of biomedical science, 24(1), 1-15. Available at: http://jbiomedsci.biomedcentral.com
  • Al Shaer, D., Al Musaimi, O., Albericio, F., & de la Torre, B. G. (2022). 2021 FDA TIDES (peptides and oligonucleotides) harvest. Pharmaceuticals, 15(2), 222. Available at: http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC8876803/
  • Lee, A. C. L., Harris, J. L., Khanna, K. K., & Hong, J. H. (2019). A comprehensive review on current advances in peptide drug development and design. International journal of molecular sciences, 20(10), 2383. Available at: http://www.ncbi.nlm. nih.gov/pmc/articles/PMC6566176/
  • Naeimi, R., Bahmani, A., & Afshar, S. (2022). Investigating the role of peptides in effective therapies against cancer. Cancer Cell International, 22(1), 1-10. Available at: http://cancerci.biomedcentral.com
  • The rise of therapeutic peptides: Follicum at the forefront. (nd) Retrieved September 23, 2023, Available at: http://www.biostock. se.
  • Anand, U., Bandyopadhyay, A., Jha, N. K., Pérez de la Lastra, J. M., & Dey, A. (2023). Translational aspect in peptide drug discovery and development: An emerging therapeutic candidate. Biofactors, 49(2), 251-269. Available at: http://iubmb.onlinelibrary. wiley.com/doi/full/10.1002/ biof.1913.
  • Gu, W., Miller, S., & Chiu, C. Y. (2019). Clinical metagenomic next-generation sequencing for pathogen detection. Annual Review of Pathology: Mechanisms of Disease, 14, 319-338. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC10206374/.
  • J Boohaker, R., W Lee, M., Vishnubhotla, P., LM Perez, J., & R Khaled, A. (2012). The use of therapeutic peptides to target and to kill cancer cells. Current medicinal chemistry, 19(22), 3794-3804. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4537071/.
  • Shadidi, M., & Sioud, M. (2003). Selective targeting of cancer cells using synthetic peptides. Drug Resistance Updates, 6(6), 363-371.Available at: http://www. sciencedirect.com/science/article/pii/ S1368764603001092.
  • Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: current status and future directions. Drug discovery today, 20(1), 122-128.Available at: http://www. sciencedirect.com/science/article/pii/ S1359644614003997.
  • Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., ... & Fu, C. (2022). Therapeutic peptides: Current applications and future directions. Signal Transduction and Targeted Therapy, 7(1), 48. Available at: http://www.nature.com/articles/s41392- 022-00904-4.
  • Baig, M. H., Ahmad, K., Saeed, M., Alharbi, A. M., Barreto, G. E., Ashraf, G. M., & Choi, I. (2018). Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomedicine & Pharmacotherapy, 103, 574-581. Available at: http://www.sciencedirect.com.
  • Recio, C., Maione, F., Iqbal, A. J., Mascolo, N., & De Feo, V. (2017). The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease. Frontiers in pharmacology, 7, 526. Available at: http://www.frontiersin.org/articles/ 10.3389/fphar.2016.00526.
  • Frese, C. K., Altelaar, A. M., van den Toorn, H., Nolting, D., Griep-Raming, J., Heck, A. J., & Mohammed, S. (2012). Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Analytical chemistry, 84(22), 9668-9673. Available at: http://www.thermofisher.com.
  • Moore, M. L., & Grant, G. A. (2002). Peptide design considerations. Synthetic peptide: A user’s guide. 2nd ed. New York: Oxford, 10-92. Available at: http://www1. biocat.com/peptide-synthesis/peptide-design- guideline.
  • Kaur, G., Kapoor, S., Kaundal, S., Dutta, D., & Thakur, K. G. (2020). Structure-guided designing and evaluation of peptides targeting bacterial transcription. Frontiers in bioengineering and biotechnology, 8, 797.Available at: http://www.ncbi.nlm.nih. gov/pmc/articles/PMC7505949/.
  • Chen, C. L., Zhang, P., & Rosi, N. L. (2008). A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. Journal of the American Chemical Society, 130(41), 13555-13557. Available at: http:// pubs.acs.org/doi/10.1021/ja805683r.
  • Julian Pampel. (2023). Peptide Synthesis - Methods and Reagents. Available at: http://www.antibodies-online.com.
  • d’Orlyé, F., Trapiella-Alfonso, L., Lescot, C., Pinvidic, M., Doan, B. T., & Varenne, A. (2021). Synthesis, characterization and evaluation of peptide nanostructures for biomedical applications. Molecules, 26(15), 4587. Available at: http://www.ncbi.nlm. nih.gov/pmc/articles/PMC8348434/.
  • Peptide Synthesis | Thermo Fisher Scientific - US. Available at: http://www.thermofisher. com.
  • Gupta, S., Azadvari, N., & Hosseinzadeh, P. (2022). Design of protein segments and peptides for binding to protein targets. BioDesign Research. Available at: http://spj. science.org/doi/10.34133/2022/9783197.
  • Neoantigen Peptide Vaccine for the Treatment of ... Available at: http://www.cancer. gov/clinicaltrials/NCI-2019-07277.
  • J Boohaker, R., W Lee, M., Vishnubhotla, P., LM Perez, J., & R Khaled, A. (2012). The use of therapeutic peptides to target and to kill cancer cells. Current medicinal chemistry, 19(22), 3794-3804. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4537071/.
  • Thundimadathil J. (2012). Cancer treatment using peptides: current therapies and future prospects. Journal of amino acids, 2012, 967347. Available at: http://pubmed. ncbi.nlm.nih.gov/23316341/.
  • Naeimi, R., Bahmani, A., & Afshar, S. (2022). Investigating the role of peptides in effective therapies against cancer. Cancer Cell International, 22(1), 1-10. Available at: http://cancerci.biomedcentral.com.
  • Xiao, Y. F., Jie, M. M., Li, B. S., Hu, C. J., Xie, R., Tang, B., & Yang, S. M. (2015). Peptide-based treatment: a promising cancer therapy. Journal of immunology research, 2015.Available at: http://www.hindawi. com/journals/jir/2015/761820/.
  • Vadevoo, S. M. P., Gurung, S., Lee, H. S., Gunassekaran, G. R., Lee, S. M., Yoon, J. W., ... & Lee, B. (2023). Peptides as multifunctional players in cancer therapy. Experimental & Molecular Medicine, 1-11. Available at: http://www.nature.com/articles/ s12276-023-01016-x.
  • Thundimadathil J. (2012). Cancer treatment using peptides: current therapies and future prospects. Journal of amino acids, 2012, 967347. at: http://www.ncbi.nlm. nih.gov/pmc/articles/PMC3539351/.
  • Ling Li, Wubliker Dessie, Zhenmin Cao, Xiaoyuan Ji , Xiaofang Luo. (2023). Recent developments in peptide-based therapeutic strategies ... Volume 14 - 2023Available at: http://www.frontiersin.org/ articles/10.3389/fphar.2023.1052301.
  • Li, C. M., Haratipour, P., Lingeman, R. G., Perry, J. J. P., Gu, L., Hickey, R. J., & Malkas, L. H. (2021). Novel peptide therapeutic approaches for cancer treatment. Cells, 10(11), 2908.Available at: http://www.ncbi. nlm.nih.gov/pmc/articles/PMC8616177/.
  • Marqus, S., Pirogova, E. & Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 24, 21 (2017). Available at: http://jbiomedsci.biomedcentral. com.
  • (2023). Peptide Receptors | GPCRs/7-TM ... Available at: http://www.tocris.com/ pharmacology/peptide-receptors.
  • Wilkinson, M., & Brown, R. (2015). Receptors for peptide hormones, neuropeptides and neurotransmitters. In An Introduction to Neuroendocrinology (pp. 236-256). Cambridge: Cambridge University Press. Available at: http://www.cambridge.org.
  • Stein, C. (2013). Opioid receptors on peripheral sensory neurons. Madame Curie Bioscience Database [Internet]. Available at: http://www.ncbi.nlm.nih.gov/books/ NBK11118/.
  • Abid, M. S. R., Mousavi, S., & Checco, J. W. (2021). Identifying receptors for neuropeptides and peptide hormones: challenges and recent progress. ACS chemical biology, 16(2), 251-263. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC8479824/.
  • Cianciulli A, Coulthard L, Hawksworth O, Lee JD, Li XX, Mitolo V, Monk P, Panaro MA, Woodruff TM. Complement peptide receptors in GtoPdb v.2023.1. IUPHAR/ BPS Guide to Pharmacology CITE. 2023; 2023(1). Available at: http://www.guidetopharmacology. org.
  • Rodger A Liddle, MD . (2023). Peptide hormone signal transduction and regulation - UpToDate. Available at: http://www. uptodate.com.
  • Shenoy, S. S., & Lui, F. (2022). Biochemistry, endogenous opioids. In StatPearls [Internet]. StatPearls Publishing.Available at: http://www.ncbi.nlm.nih.gov/books/ NBK562260/.
  • Peptide Receptors - an overview. (nd) Retrieved September 26, 2023, Available at: http://www.sciencedirect.com.
  • Chinnadurai, R. K., Khan, N., Meghwanshi, G. K., Ponne, S., Althobiti, M., & Kumar, R. (2023). Current research status of anti-cancer peptides: Mechanism of action, production, and clinical applications. Biomedicine & Pharmacotherapy, 164, 114996.Available at: http://www. sciencedirect.com/science/article/pii/ S0753332223007862.
  • Peiman Norouzi,Maryam Mirmohammadi, Mohammad Hassan Houshdar Tehrani. (2022) Chemico-Biological Interactions., 368, 10194 Anticancer peptide mechanisms, simple and complex. Available at: http://www.sciencedirect.com.
  • J Boohaker, R., W Lee, M., Vishnubhotla, P., LM Perez, J., & R Khaled, A. (2012). The use of therapeutic peptides to target and to kill cancer cells. Current medicinal chemistry, 19(22), 3794-3804. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4537071/.
  • Li, C. M., Haratipour, P., Lingeman, R. G., Perry, J. J. P., Gu, L., Hickey, R. J., & Malkas, L. H. (2021). Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells, 10(11), 2908. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC8616177/.
  • Naeimi, R., Bahmani, A. & Afshar, S. Investigating the role of peptides in effective therapies against cancer. Cancer Cell Int 22, 139 (2022). Available at: http://cancerci. biomedcentral.com. 46. hiangjong, W., Chutipongtanate, S., & Hongeng, S. (2020). Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). International Journal of Oncology, 57, 678-696. Available at: http://www. spandidos-publications.com/10.3892/ ijo.2020.5099.
  • Trinidad-Calderón, P. A., Varela-Chinchilla, C. D., & García-Lara, S. (2021). Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules (Basel, Switzerland), 26(24), 7453. Available at: http://www.ncbi.nlm.nih.gov/ pmc/articles/PMC8708364/.
  • Karami Fath, M., Babakhaniyan, K., Zokaei, M. et al. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett 27, 33 (2022). Available at: http://cmbl.biomedcentral.com/articles/ 10.1186/s11658-022-00332-w.
  • Ruiquan Ge1, Chuan Don, Juexin Wang, Yanjie Wei. (2023). Machine Learning for Peptide Structure, Function, and ... . 15, 1007635. Available at: http://www.frontiersin. org.
  • Xudong Zhang, Cesar de la Fuente-Nunez, Jun Wang, Artificial intelligence accelerates efficient mining of functional peptides, Life Medicine, Volume 2, Issue 2, April 2023, lnad005. Available at: http:// academic.oup.com/lifemedi/article/2/2/ lnad005/7052731.
  • Pooja Arora, Shraddha Surana. (2022): Using machine learning to identify antimicrobial peptides. Available at: http:// www.thoughtworks.com.
  • Shoombuatong, W., Schaduangrat, N., & Nantasenamat, C. (2018). Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI journal, 17, 734. Available at: http://www.ncbi. nlm.nih.gov/pmc/articles/PMC9531310/.
  • McDonnell, K., Howley, E., & Abram, F. (2023). Critical evaluation of the use of artificial data for machine learning based de novo peptide identification. Computational and Structural Biotechnology Journal, 21, 2732-2743. Available at: http:// www.sciencedirect.com/science/article/ pii/S200103702300168X.
  • Jiang, J., Li, J., Li, J., Pei, H., Li, M., Zou, Q., & Lv, Z. (2023). A Machine Learning Method to Identify Umami Peptide Sequences by Using Multiplicative LSTM Embedded Features. Foods, 12(7), 1498. Available at: http://www.mdpi.com/2304- 8158/12/7/1498.
  • Otvos Jr, L., & Wade, J. D. (2014). Current challenges in peptide-based drug discovery. Frontiers in chemistry, 2, 62. Available at: http://www.frontiersin.org.
  • Nuritas. Rapid and unrivalled AI-enabled peptide discovery. Biopharma Dealmakers (Biopharm Deal)2730-6283. Available at: http://www.nature.com/articles/d43747- 020-00948-x.
  • Kabra, R., & Singh, S. (2021). Evolutionary artificial intelligence based peptide discoveries for effective Covid-19 therapeutics. Biochimica et biophysica acta. Molecular basis of disease, 1867(1), 165978. Available at: http://pubmed.ncbi. nlm.nih.gov/32980462/.
  • (2023). Peptilogics. Available at: http:// peptilogics.com/.
  • (2023). Artificial Intelligence in Biomedical Imaging Lab | CBICA, Perelman School of Medicine. Available at: http://www. med.upenn.edu/cbica/aibil.html