Mısır Bitkisinde Kök Çürüklüğü Etmeni Fusarium moniliforme Sheldon’a Karşı Antagonistik Bakterilerin Değerlendirilmesi

Mısır bitkisinde Fusarium moniliforme (Fm)’nin neden olduğu kök çürüklüğü hastalığı dünya genelinde üretim alanlarında ciddi sorunlara yol açan fungal bir hastalıktır. Bu çalışmada bazı yararlı bakterilerin Fm etmenine karşı in-vitro ve in-vivo koşullar altında biyokontrol etkinliğinin değerlendirilmesi amaçlanmıştır. Çalışmada kullanılmak üzere seçilen 16 aday bakterinin Fm’ye karşı in-vitro biyokontrol etkisini tespit etmek için ikili kültür yöntemi kullanılmıştır. In-vitro test sonucunda seçilen en başarılı beş bakteri izolatı ile in-vivo testler gerçekleştirilmiştir. In-vivo çalışmada; hastalık etmeni ile doğal bulaşık olan mısır tohumları yararlı bakteriyel izolatlar ile carboxy methyl cellulose (CMC, %1 v/v) kullanılarak bakteri ile kaplanmış ve saksılara ekilmiştir. Deneme sonucunda, Pantoae agglomerans E325 izolatı, pozitif kontrole göre in-vitro’da %39.68 in-vivo’da %82.61 oranında hastalığı baskılayarak mısır kök çürüklüğü etmeni Fm’ye karşı en başarılı uygulama olmuştur.

Evaluation of Antagonistic Bacteria Against Fusarium moniliforme Sheldon Causal Agent of Root Rot of Maize

Fusarium moniliforme (Fm), casual agent is root rot disease of is a serious fungal disease in maize production areas in worldwide. In this study, it was aimed to evaluate the biocontrol effectiveness of some beneficial bacteria against Fm under in-vitro and in-vivo conditions. In-vitro test was performed with dual culture method for determining the effects of 16 candidate bacteria against Fm. In-vivo biocontrol tests for Fm were realized by five promising isolates, which were selected from in-vitro test results. Naturally contaminated maize seeds with Fm were covered bacteria with carboxy methyl cellulose (CMC, 1%, v/v) with beneficial bacteria and sowed in pots for in-vivo tests. Pantoea agglomerans E325 was the most successful bacterial treatment inhibiting the mycelial development of Fm at the rate of 39.68% and decreasing the disease development by the 82.61% efficacy compared to the positive control.

___

  • Aktaş, H., Tunalı, B. and Aktuna, İ. 1998. Bolu ve Zonguldak İllerinde Mısır Tohumlarında Görülen Fungusların Saptanması Üzerinde Araştırmalar. VIII. Türkiye Fitopatoloji Kongre Bildirileri. 21-25 Eylül 1998, Ankara, 305-310.
  • Altıparmak, G. and Tunalı, B. 2009. Incidence of Fusarium Species and Levels of Fumonisin B1 in Corn in the Samsun Province of Turkey. Phytoprotection, 90, 97-106.
  • Amellal, N., Burtin, G., Bartoli, F. and Heulin, T. 1998. Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl Environ Microbiol., 64: 3740–3747.
  • Bacon, C.W., Yates, I.E., Hinton, D.M. and Meredith, F. 2001. Biological control of Fusarium moniliforme in maize. Environ. Health Perspect., 109: 325-332.
  • Baker, R. and Ahmad, J. 1986. Rhizosphere competence of Trichoderma harzianum. Ecology and Epidemiology. 77: 182-189.
  • Bata, A. and Lasztity, R. 1999. Detoxification of mycotoxin-contaminated food and feed by microorganisms. Trends Food Sci. Technol., 10: 223-228.
  • Benzeduzi, A., Ambrosini, A. and Passaglina, L.M.P. 2012. Plant growth promoting rhizobacteria (PGPR) their potential as antagonists and biocontrol agents. Genet. Mol. Biol., 35: 1044-1051.
  • Bevivino, A., Sarrocco, S., Dalmastri, C., Tabacchioni, S., Cantale, C. and Chiarini, L. 1998: Characterisation of a freeliving maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol. Ecol. 27: 225–237.
  • Bressan, W. 2003. Biological control of maize seed pathogenic fungi by use of actinomycetes. BioControl. 48, 233–240.
  • Chernin L., Ismailov, Z., Haran, S. and Chet, I. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ. Microbiol. 61: 1720–1726.
  • Güllü, D.M., Göven, D.M.A., Fidan, U.H., Aksoy, D.E. and Arslan, D.Z.F. 2017. Mısır Entegre Mücadele Teknik Talimatları. GTHB Matbaası, Ankara, 110 s.
  • Hebber, K.P., Atkinson, D., Tucker, W. and Dart, P.J. 1992. Suppression of Fusarium moniliforme by maize root-associated Pseudomonas cepacia. Soil Biol. Biochem, 24: 1009–1020.
  • Huang, R., Galperin, M., Levy, Y. and Perl‐Treves, R. 1997. Genetic diversity of Fusarium moniliforme detected by vegetative compatibility groups and random amplified polymorphic DNA markers. Plant Pathol., 46: 871-881.
  • Jin, M., Liu, L., Wright, S.A.I., Beer, S.V. and Clardy, J. 2003. Structural and functional analysis of Pantocin A: an antibiotic from Pantoea agglomerans discovered by heterologous expression of cloned genes. Angew. Chem. Int. Edit, 42:2898-2901.
  • Kearns, L.P. and Hale, C.N. 1996. Partial characterization of an inhibitory strain of Erwinia herbicola with potential as a biocontrol agent for Erwinia amylovora, the fire blight pathogen. J. Appl. Bacteriol. 81: 369-374.
  • Kempf, H-J. and Wolf, G. 1989. Erwinia herbicola as a biocontrol agent of Fusarium culmorum and Puccinia recondita f. sp. tritici on wheat. Phytopathology, 79: 990–994.
  • Keser, O. and Kutay, H.C. 2009. Mikotoksinlerin önlenmesinde kullanılan bazı yöntemler:. Kimyasal ve Biyolojik yöntemler. İstanbul Üniversitesi Veterinerlik Fakültesi Dergisi, 35: 19- 30.
  • Lavkor, I. 2019. Mısırda Koçan Çürüklüğüne Neden Olan Fungal Türler ve Mısırda Oluşan Mikotoksinler. GIDA/The J. FOOD, 44: 1197-1209.
  • Marin, S., Sanchis, V. and Magan, N. 1995. Water activity, temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. Can. J. Microbiol., 41: 1063–1070.
  • Mason, P.G. and Gillespie, D.R. 2013. Biological control programmes in Canada 2001-2012. Canada.
  • Miller, J.D. 1994. Epidemiology of Fusarium ear diseases of cereals. Pages 19-35 in: Mycotoxins in grain:compounds other than Aflatoxin. J.D.Miller and H.L.Trenholm.eds. Eagan Pres, St. Paul.
  • Mishra, A., Chauhan, P.S., Chaudhry, V., Tripathi, M. and Nautiyal, C.S. 2011. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Antonie Van Leeuwenhoek, 100: 405-413.
  • Nejad, P. and Johnson, P.A. 2000. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Bio. Control, 18: 208-215.
  • Oren, L., Ezrati, S., Cohen, D. and Sharon, A. 2003. Early events in the Fusarium verticillioides-maize interaction characterized by using a green fluorescent protein-expressing transgenic isolate. Appl. Environ. Microbiol., 69:1695-1701.
  • Özcan, S. 2009. Modern dünyanın vazgeçilmez bitkisi mısır: genetiği değiştirilmiş (transgenik) mısırın tarımsal üretime katkısı. Türk Bilimsel Derlemeler Dergisi, 2: 1-34.
  • Pal, K.K., Tilak, K.V.B.R., Saxcna, A.K., Dey, R. and Singh, C.S. 2001. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol. Res., 156: 209-223.
  • Pandolfi, V., Jorge, E.C., Melo, C.M., Albuquerque, A.C. and Carrer, H. 2010, Gene expression profile of the plant pathogen Fusarium graminearum under the antagonistic effect of Pantoea agglomerans. Genet Mol Res. 9: 1298–1311.
  • Pusey, P.L., Stockwell, V.O., Rudell, D.R 2008. Antibiosis and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora. Phytopathology, 98: 1136-1143.
  • Pusey, P.L., Stockwelll, V.O. Reardon, C.L., Smits, T.H.M. and Duffy, B. 2011. Antibiosis Activity of Pantoae agglomerans Biocontrol Stran E325 against Erwinia amylovora on Apple Flower Stigmas. Am. Phytopathol. Soc.,101: 1234-1241.
  • Raju, N.S., Niranjana, S.R., Janardhana, G.R., Prakash, H.S., Shetty, H.S. and Mathur, S.B. 1999: Improvement of seed quality and field emergence of Fusarium moniliforme infected sorghum seeds using biocontrol agents. J. Sci. Food Agric. 79: 206–212.
  • Romanenko, V.M. and Alimov, D.M., 2000, Ability of representatives of Pantoea agglomerans, as well as Bacillus subtilis and some Pseudomonas species to suppress the development of phytopathogenic bacteria and micromycetes in regulating plant growth. Mikrobiol Z. 62: 29–37.
  • Sarma, R.K. and Saikia, R. 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil, 377: 111-126.
  • Soran, H. and Asan, A. 1987. Edirne ve Civarında Yetiştirilen Mısırlarda Tohumla Taşınan Fungusların Tespiti Üzerinde Araştırmalar. Bitki Koruma Bul., 27: 111-117.
  • Stockwell, V.O., Johnson, K.B., Sugar, D. and Loper, J.E. 2010. Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula. Phytopathology, 100: 1330-1339.
  • Townsend, G.R. 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Dis. Rep., 27: 340-343.
  • Tsavkelova, E.A., Cherdyntseva, T.A., Botina, S.G. and Netrusov, A.I. 2007. Bacterial assocciated with orchid roots and microbial production of auxin. Microbiol. Res., 162: 69-76.
  • Tunalı, B., Kansu, B., Maldar, M., Meyva, G. and Saygı, S. 2016. Samsun ve Ordu illerinden toplanan mısır koçanlarındaki fungal floranın değişiminin belirlenmesi. Bitki Koruma Bülteni, 56: 369-383.
  • Walterson, A.M. and Stavrinides, J. 2015. Pantoae: insights into a highly versatile and diverse genus within the Enterobacteriaceae. Microbiol. Rev., 39: 968-984.
  • Wodzinski, R.S., Umholtz, T.E., Rundle, J.R. and Beer, S.V. 1994. Mechanisms of inhibition of Erwinia amylovora by E. herbicola in-vitro and in-vivo. J. Appl. Bacteriol. 76: 22-29.