APPLICATION OF FSW TECHNIQUE TO AA2124/%25SiCp-T4 ALUMINUM MATRIX COMPOSITES

APPLICATION OF FSW TECHNIQUE TO AA2124/%25SiCp-T4 ALUMINUM MATRIX COMPOSITES

Abstract In the present study, AA2124/25%vol.SiCp-T4 aluminum metal matrix composite plates were successfully friction stir butt joined using various welding parameters. The influence of the welding parameters on the distribution, micro-hardness and tensile strength of the joints was investigated and the joint efficiency was determined. The temperature measurements were obtained from four points at the each side of the weld, namely tool advancing and tool retreating side, from the 15 mm away from the weld center. Based on these measurements, the average peak temperature in the weld nugget was predicted according to studies in literature. As a result of the study, the temperature dissipation show that the max. 180-270 °C occurred at 15 mm away from the centerline of the weld. The maximum and minimum values of joint performance was obtained at 1400/40 and 1400/100 welding parameters as 73% and 59.32%, respectively. It was not detected a noticeable differences in micro-hardness measurements of the stir zone. It is determined that micro-hardness distribution in stir zone is in accordance with literature supported results due to dynamic recrystallization.

___

  • 1. Chawla, N.; Chawla, K. Metal-matrix composites in ground transportation. JoM 2006, 58, 67-70.2. Kurşun, T. Gazaltı kaynak tekniğinde kullanılan koruyucu gaz ve gaz karışımlarının 19mn6 kalite çeliğinin kaynatılmasında mekanik özelliklere etkisi ve tozaltı kaynağı ile karşılaştırması. Erciyes Ünv. Fen Bil. Ens., Yüksek Lisans Tezi, Kayseri 1998.3. Ellis, M. Joining of aluminium based metal matrix composites. International Materials Reviews 1996, 41, 41-58.4. Urena, A.; Escalera, M.; Gil, L. Influence of interface reactions on fracture mechanisms in tig arc-welded aluminium matrix composites. Composites Science and Technology 2000, 60, 613-622.5. Rotundo, F.; Ceschini, L.; Morri, A.; Jun, T.-S.; Korsunsky, A. Mechanical and microstructural characterization of 2124al/25 vol.% sicp joints obtained by linear friction welding (lfw). Composites Part A: Applied Science and Manufacturing 2010, 41, 1028-1037.6. Wert, J.A. Microstructures of friction stir weld joints between an aluminium-base metal matrix composite and a monolithic aluminium alloy. Scripta Materialia 2003, 49, 607-612.7. Fernandez, G.; Murr, L. Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+ 20% sic metal-matrix composite. Materials Characterization 2004, 52, 65-75.8. Ceschini, L.; Boromei, I.; Minak, G.; Morri, A.; Tarterini, F. Microstructure, tensile and fatigue properties of aa6061/20 vol.% al2o3p friction stir welded joints. Composites Part A: Applied Science and Manufacturing 2007, 38, 1200-1210.9. Minak, G.; Ceschini, L.; Boromei, I.; Ponte, M. Fatigue properties of friction stir welded particulate reinforced aluminium matrix composites. International Journal of Fatigue 2010, 32, 218-226.10. Uzun, H.; Dalle Donne, C.; Argagnotto, A.; Ghidini, T.; Gambaro, C. Friction stir welding of dissimilar al 6013-t4 to x5crni18-10 stainless steel. Materials & design 2005, 26, 41-46.11. Prado, R.; Murr, L.; Shindo, D.; Soto, K. Tool wear in the friction-stir welding of aluminum alloy 6061+ 20% al2o3: A preliminary study. Scripta materialia 2001, 45, 75-80.12. Marzoli, L.; Strombeck, A.; Dos Santos, J.; Gambaro, C.; Volpone, L. Friction stir welding of an aa6061/al2o3/20p reinforced alloy. Composites Science and Technology 2006, 66, 363-371.13. Mohammadnezhad, M.; Shamanian, M.; Zabolian, A.; Taheri, M.; Javaheri, V.; Navidpour, A.H.; Nezakat, M.; Szpunar, J.A. Microstructure and crystallographic texture variations in the friction-stir-welded al-al 2 o 3-b 4 c metal matrix composite produced by accumulative roll bonding. Metallurgical and Materials Transactions A 2015, 46, 5747-5755.14. Feng, A.; Ma, Z. Formation of cu2feal7 phase in friction-stir-welded sicp/al–cu–mg composite. Scripta Materialia 2007, 57, 1113-1116.15. Jata, K.; Semiatin, S. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys; AIR FORCE RESEARCH LAB WRIGHT-PATTERSON AFB OH MATERIALS AND MANUFACTURING DIRECTORATE: 2000.16. Liu, G.; Murr, L.; Niou, C.; McClure, J.; Vega, F. Microstructural aspects of the friction-stir welding of 6061-t6 aluminum. Scripta materialia 1997, 37, 355-361.17. Xie, G.; Ma, Z.; Geng, L. Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scripta Materialia 2007, 57, 73-76.18. Milagre, M.X.; Mogili, N.V.; Donatus, U.; Giorjão, R.A.R.; Terada, M.; Araujo, J.V.S.; Machado, C.S.C.; Costa, I. On the microstructure characterization of the aa2098-t351 alloy welded by fsw. Materials Characterization 2018, 140, 233-246.19. Rhodes, C.; Mahoney, M.; Bingel, W.; Spurling, R.; Bampton, C. Effects of friction stir welding on microstructure of 7075 aluminum. Scripta materialia 1997, 36, 69-75.20. Sato, Y.S.; Kokawa, H.; Enomoto, M.; Jogan, S. Microstructural evolution of 6063 aluminum during friction-stir welding. Metallurgical and Materials Transactions A 1999, 30, 2429-2437.21. Russell, M.J.; Shercliff, H.R. In Analytical modeling of microstructure development in friction stir welding, 1. International Symposium on Friction Stir Welding, Thousand Oaks, Cal, USA, 1999; Thousand Oaks, Cal, USA.22. Covington, J.L. Experimental and numerical investigation of tool heating during friction stir welding. 2005.23. Vilaça, P.; Quintino, L.; dos Santos, J.F.; Zettler, R.; Sheikhi, S. Quality assessment of friction stir welding joints via an analytical thermal model, istir. Materials Science and Engineering: A 2007, 445, 501-508.24. Nandipati, G.; Damera, N.; Nallu, R. Effect of microstructural changes on mechanical properties of friction stir welded nano sic reinforced aa6061composite. International Journal of Engineering Science and Technology 2010, 2, 6491-6499.25. Sivaraj, P.; Kanagarajan, D.; Balasubramanian, V. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade aa7075-t651 aluminium alloy. Defence Technology 2014, 10, 1-8.26. Bozkurt, Y.; Uzun, H.; Salman, S. Microstructure and mechanical properties of friction stir welded particulate reinforced aa2124/sic/25p–t4 composite. Journal of Composite Materials 2011, 45, 2237-2245.27. Adesina, A.Y.; Al-Badour, F.A.; Gasem, Z.M. Wear resistance performance of alcrn and tialn coated h13 tools during friction stir welding of a2124/sic composite. Journal of Manufacturing Processes 2018, 33, 111-125.28. Miller, W.S.; Humphreys, F.J. Strengthening mechanisms in particulate metal matrix composites. Scripta Metallurgica et Materialia 1991, 25, 33-38.29. Embury, J.D.; Lloyd, D.J.; Ramachandran, T.R. 22 - strengthening mechanisms in aluminum alloys. In Treatise on materials science & technology, Vasudevan, A.K.; Doherty, R.D., Eds. Elsevier: 1989; Vol. 31, pp 579-601.30. Shaterani, P.; Zarei-Hanzaki, A.; Fatemi-Varzaneh, S.M.; Hassas-Irani, S.B. The second phase particles and mechanical properties of 2124 aluminum alloy processed by accumulative back extrusion. Materials & Design 2014, 58, 535-542.31. Donatus, U.; Thompson, G.E.; Zhou, X.; Wang, J.; Beamish, K. Flow patterns in friction stir welds of aa5083 and aa6082 alloys. Materials & Design 2015, 83, 203-213.32. Gao, C.; Zhu, Z.; Han, J.; Li, H. Correlation of microstructure and mechanical properties in friction stir welded 2198-t8 al–li alloy. Materials Science and Engineering: A 2015, 639, 489-499.