WEAR PROPERTIES OF NANOFILLED AND MICROFILLED COMPOSITE RESTORARIVE MATERIALS

WEAR PROPERTIES OF NANOFILLED AND MICROFILLED COMPOSITE RESTORARIVE MATERIALS

The purpose of this in vitro study was to compare the two-body wear resistance of nanofilled (3M ESPE Filtek Silorane ) and microfilled (3M ESPE Filtek Z250) composite restorative materials. Eight standardized disc shape specimens (6mm diameter X 8mm height) were prepared from two composite materials. Specimens were subjected to chewing simulation using a chewing simulator (F=49N (vertical 6 mm, horizontal 2 mm) 2,4 X 105 cycles and frequency 1,6 Hz) and simultaneous thermal cycling (3000 cycles, 5°C/55°C, 1min/cycle). AL2O3 balls were used as antagonists for every experiment chewing cycle. Mean volume loss values were determined using 3D laser scanning device. Mean values and standard deviations were calculated and statistical analysis was performed using one-way Anova and Tukey’s test (α=,05). Vicker hardness values for Filtek Z250 (about 69HV) and for Filtek Silorane (about 45HV) were measured. Mean volume loss of Filtek Z250 (3,8µm3 p=.021) is measured to be lower than Filtek Silorane (5,9µm3 p=.017). In this study, suggested the excellent two body wear behaviour of the microfilled Filtek Z250. However, this study isn’t correlations linear between filler volume values and two body wear resistance

___

  • Bicer, A. Z. Y., Karakis, D., Dogan, A., & Mert, F. (2015). A comparison of wear rate of direct and indirect resin composites: A two-body wear abrasion test. Journal of Composite Materials, 49(21), 2599-2607. doi:10.1177/0021998314550845.
  • Cao, L. Q., Zhao, X. Y., Gong, X., & Zhao, S. L. (2013). An in vitro investigation of wear resistance and hardness of composite resins. International Journal of Clinical and Experimental Medicine, 6(6), 423-430.
  • Christensen, G. J. (2007). Remaining challenges with Class II resin-based composite restorations. Journal of the American Dental Association, 138(11), 1487- 1489.
  • Condon, J. R., & Ferracane, J. L. (1996). Evaluation of composite wear with a new multi-mode oral wear simulator. Dental Materials, 12(4), 218-226. doi:Doi 10.1016/S0109-5641(96)80026-1.
  • Condon, J. R., & Ferracane, J. L. (1997). In vitro wear of composite with varied cure, filler level, and filler treatment. Journal of Dental Research, 76(7), 1405-1411.
  • DeLong, R., Pintado, M. R., Douglas, W. H., Fok, A. S., Wilder, A. D., Swift, E. J., & Bayne, S. C. (2012). Wear of a dental composite in an artificial oral environment: A clinical correlation. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 100b(8), 2297-2306. doi:10.1002/jbm.b.32801.
  • Harsha, A. P., & Tewari, U. S. (2003). Two-body and three-body abrasive wear behaviour of polyaryletherketone composites. Polymer Testing, 22(4), 403-418. doi:10.1016/S0142-9418(02)00121-6.
  • Heintze, S. D. (2006). How to qualify and validate wear simulation devices and methods. Dental Materials, 22(8), 712-734. doi:10.1016/j.dental.2006.02.002.
  • Heintze, S. D., Zellweger, G., Cavalleri, A., & Ferracane, J. (2006). Influence of the antagonist material on the wear of different composites using two different wear simulation methods. Dental Materials, 22(2), 166-175. doi:10.1016/j.dental.2005.04.012.
  • Heintze, S. D., Zellweger, G., & Zappini, G. (2007). The relationship between physical parameters and wear of dental composites. Wear, 263, 1138-1146. doi:10.1016/j.wear.2006.12.010.
  • Hu, X., Shortall, A. C., & Marquis, P. M. (2002). Wear of three dental composites under different testing conditions. Journal of Oral Rehabilitation, 29(8), 756-764. doi:DOI 10.1046/j.1365-2842.2002.00878.x.
  • Johansson, A., Haraldson, T., Omar, R., Kiliaridis, S., & Carlsson, G. E. (1993). An Investigation of Some Factors Associated with Occlusal Tooth Wear in a Selected High-Wear Sample. Scandinavian Journal of Dental Research, 101(6), 407-415.
  • Kim, S. K., Kim, K. N., Chang, I. T., & Heo, S. J. (2001). A study of the effects of chewing patterns on occlusal wear. Journal of Oral Rehabilitation, 28(11), 1048- 1055. doi:DOI 10.1046/j.1365-2842.2001.00761.x.
  • Koottathape, N., Takahashi, H., Iwasaki, N., Kanehira, M., & Finger, W. J. (2014). Quantitative wear and wear damage analysis of composite resins in vitro. Journal of the Mechanical Behavior of Biomedical Materials, 29, 508-516. doi:10.1016/j.jmbbm.2013.10.003.
  • Kurachi, C., Tuboy, A. M., Magalhaes, D. V., & Bagnato, V. S. (2001). Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dental Materials, 17(4), 309-315. doi:Doi 10.1016/S0109-5641(00)00088-9.
  • Lim, B. S., Ferracane, J. L., Condon, J. R., & Adey, J. D. (2002). Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dental Materials, 18(1), 1-11. doi:Doi 10.1016/S0109-5641(00)00103-2.
  • Lutz, F., Phillips, R. W., Roulet, J. F., & Setcos, J. C. (1984). In vivo and in vitro wear of potential posterior composites. Journal of Dental Research, 63(6), 914-920.
  • Mair, L. H., Stolarski, T. A., Vowles, R. W., & Lloyd, C. H. (1996). Wear: Mechanisms, manifestations and measurement. Report of a workshop. Journal of Dentistry, 24(1-2), 141-148. doi:Doi 10.1016/0300-5712(95)00043-7
  • Souza, R. O. A., Ozcan, M., Michida, S. M. A., de Melo, R. M., Pavanelli, C. A., Bottino, M. A., Martin, A. A. (2010). Conversion Degree of Indirect Resin Composites and Effect of Thermocycling on Their Physical Properties. Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry, 19(3), 218-225. doi:10.1111/j.1532-849X.2009.00551.x.
  • Willems, G., Lambrechts, P., Braem, M., & Vanherle, G. (1993). Three-year followup of five posterior composites: in vivo wear. Journal of Dentistry, 21(2), 74-78.
  • Yap, A. U. J., Chew, C. L., Ong, L. F. K. L., & Teoh, S. H. (2002). Environmental damage and occlusal contact area wear of composite restoratives. Journal of Oral Rehabilitation, 29(1), 87-97. doi:DOI 10.1046/j.1365-2842.2002.00797.x.