COBALT-PLATINUM (CoPt) MIXED SUBNANOPARTICLES WITH THE INTERACTION OF ETHYNYL ANION (C2H-): A DFT MATERIAL MODELING STUDY

COBALT-PLATINUM (CoPt) MIXED SUBNANOPARTICLES WITH THE INTERACTION OF ETHYNYL ANION (C2H-): A DFT MATERIAL MODELING STUDY

The purpose of most of the computational material science studies is to determine the relationship between structure and property alteration. The knowledge of the property variation with geometry also allows one to carry out material computer experiments to design new stable nanoparticles with desired properties. The DFT study carried out in the present work on the small bimetallic anionic ConPtm-ethynyl nanoparticles reveals that Pt content in the lowest energetic nanoparticles lead to increase in chemical stability of the structures that play significant role in nanoparticles for preserving current condition. The highest HLG belongs to [Pt3C2H]- which indicates their chemical stability. Furthermore, the vibrational frequency calculations will guide future spectroscopic experiments.

___

  • F. Tournus, N. Blanc, A. Tamion, P. Ohresser, A. Perez, V. Dupuis. XMCD study of CoPt nanoparticles embedded in MgO and amorphous carbon matrices. Journal of Electron Spectroscopy and Related Phenomena 2008; 166: 84-88.
  • F. Tournus, A. Tamion, N. Blanc, A. Hannour, L. Bardotti, B. Prével, P. Ohresser, E. Bonet, T. Epicier V. Dupuis Physical Review B 2008; 77: 144411.
  • M.E. Gruner, G. Rollmann, P. Entel, M. Farle. Multiply Twinned Morphologies of FePt and CoPt Nanoparticles. Physical Review Letters 2008; 100: 087203.
  • B.H. An, J.H. Wu, H.L. Liu, S.P. Ko, J.S. Ju, Y.K. Kim. CoPt nanoparticles by a modified polyol process. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008; 313-314: 250-253.
  • G. Rossi, R. Ferrando, C. Mottet. Structure and chemical ordering in CoPt nanoalloys. Faraday Discussions 2008; 138: 193-210.
  • P. Moskovkin, M. Hou. Metropolis Monte Carlo predictions of free Co-Pt nanoclusters. Journal of Alloys and Compounds 2007; 434-435: 550-554.
  • J.K. J.H. Kim, N. Oh, Y-H. Kim, C.K. Kim, C.S. Yoon, S. Jin. Monolayer CoPt magnetic nanoparticle array using multiple thin film depositions. Applied Physics Letters 2007; 90: 023117.
  • Yuan, Jinyun, Hong-Guang Xu, Zeng-Guang Zhang, Yuan Feng, Weijun Zheng. Adsorption of C2H Radical on Cobalt Clusters: Anion Photoelectron Spectroscopy and Density Functional Calculations. The Journal of Physical Chemistry 2010; A115.2: 182-186.
  • M.N. Dave, M.L. Wears, J. Michael, C. Desmond. Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording. Nanotechnology 2007; 18: 205301.
  • L. Favre, V. Dupuis, E. Bernstein, P. Mélinon, A. Pérez, S. Stanescu, T. Epicier, J.P. Simon, D. Babonneau, J.M. Tonnerre, J.L. Hodeau. Physical Review B 2006; 74: 014439.
  • A. Hannour, L. Bardotti, B. Prével, E. Bernstein, P. Mélinon, A. Perez, J. Gierak, E. Bourhis, D. Mailly. 2D arrays of CoPt nanocluster assemblies. Surface Science 2005; 594: 1-11.
  • S. Rohart, C. Raufast, L. Favre, E. Bernstein, E. Bonet, V. Dupuis. Magnetic anisotropy of CoxPt1−x clusters embedded in a matrix: Influences of the cluster chemical composition and the matrix nature. Physical Review B 2006; 74: 104408.
  • T. Seto, K. Koga, H. Akinaga, F. Takano, T. Orii, M. Hirasawa. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles. J Nanopart Res 2006; 8: 371-378.
  • V. Tzitzios, D. Niarchos, M. Gjoka, N. Boukos, D. Petridis. Synthesis and Characterization of 3D CoPt Nanostructures. Journal of the American Chemical Society 2005; 127: 13756-13757.
  • M. Mizuno, Y. Sasaki, M. Inoue, C.N. Chinnasamy, B. Jeyadevan, D. Hasegawa, T. Ogawa, M. Takahashi, K. Tohji, K. Sato, S. Hisano. Structural and magnetic properties of monolayer film of CoPt nanoparticles synthesized by polyol process. Journal of Applied Physics 2005; 97: 10J301
  • L. Castaldi, K. Giannakopoulos, A. Travlos, D. Niarchos, S. Boukari, E. Beaurepaire. CoPt nanoparticles deposited by electron beam evaporation. Journal of Magnetism and Magnetic Materials 2005; 290-291 PART 1: 544-546.
  • T. Vassilios, N. Dimitrios, M. Gjoka, J. Fidler, P. Dimitrios. Synthesis of CoPt nanoparticles by a modified polyol method: characterization and magnetic properties. Nanotechnology 2005; 16: 287.
  • Y.-H.X. Jiao-Ming Qiu, Jack, H. Judy, Jian-Ping,Wang, J. P. Nanocluster deposition for high density magnetic recording tape media. Journal of applied physics 2005; 97: 10P704.
  • Y. Wang, H. Yang. Synthesis of CoPt Nanorods in Ionic Liquids. Journal of the American Chemical Society 2005; 127: 5316-5317.
  • X. Sun, Z.Y. Jia, Y.H. Huang, J.W. Harrell, D.E. Nikles, K. Sun, L.M. Wang. Synthesis and magnetic properties of CoPt nanoparticles. Journal of Applied Physics 2004; 95: 6747-6749.
  • C.N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji. Polyol-process-derived CoPt nanoparticles: Structural and magnetic properties. Journal of Applied Physics 2003; 93: 7583-7585.
  • H.R. Wang, C.X. Huang, H. Jiang, J.J. Li, J.L. Xu, G.Y. Zhu, B. Yang, X.J. Jiang, G.S. Li. Direct proinflammatory effect of C-reactive protein on human monocytes isolated from patients with acute coronary syndrome and statins intervention. Chinese Pharmacological Bulletin 2004; 20: 1279-1283.
  • M. Yu, Y. Liu, D.J. Sellmyer. Nanostructure and magnetic properties of composite CoPt:C films for extremely high-density recording. Journal of Applied Physics 87 6959-6961.
  • Y. Sui, L. Yue, R. Skomski, X.Z. Li, J. Zhou, D.J. Sellmyer. CoPt hard magnetic nanoparticle films synthesized by high temperature chemical reduction. Journal of Applied Physics 2003; 93: 7571-7573.
  • Y. Xu, Z.G. Sun, Y. Qiang, D.J. Sellmyer. Preparation and magnetic properties of CoPt and CoPt:Ag nanocluster films. Journal of Magnetism and Magnetic Materials 2003; 266: 164-170.
  • A.C.C. Yu, M. Mizuno, Y. Sasaki, H. Kondo, K. Hiraga. Structural characteristics and magnetic properties of chemically synthesized CoPt nanoparticles. Applied Physics Letters 2002; 81: 3768-3770.
  • E.V. Shevchenko, D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller. Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals. Journal of the American Chemical Society 2002; 124: 11480-11485.
  • T.O. Ely, C. Pan, C. Amiens, B. Chaudret, F. Dassenoy, P. Lecante, M.J. Casanove, A. Mosset, M. Respaud, J.M. Broto. Nanoscale Bimetallic CoxPt1-x Particles Dispersed in Polyvinylpyrrolidone;: Synthesis from Organometallic Precursors and Characterization. The Journal of Physical Chemistry B, 2000; 104: 695-702.
  • Z. Zhang, D.A. Blom, Z. Gai, J.R. Thompson, J. Shen, S. Dai. High-Yield Solvothermal Formation of Magnetic CoPt Alloy Nanowires. Journal of the American Chemical Society 2003; 125: 7528-7529.
  • D.J. Sellmyer, M. Yu, R.D. Kirby. Nanostructured magnetic films for extremely high density recording. Nanostructured Materials 1999; 12: 1021-1026.
  • S. Blundell, D. Thouless. Magnetism in condensed matter. American Journal of Physics 2003; 71: 94-95.
  • W.-F. Huang, Q. Zhang, D.-F. Zhang, J. Zhou, C. Si, L. Guo, W.-S. Chu, Z.-Y. Wu. Investigation of structural and magnetic properties of CoPt/CoAu bimetallic nanochains by x-ray absorption spectroscopy. The Journal of Physical Chemistry C 2013; 117:6872-6879.
  • M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Computer Physics Communications 2010; 181: 1477-1489.
  • M.M. Hurley, L.F. Pacios, P.A. Christiansen, R.B. Ross, W.C. Ermler. Abinitio relativistic effective potentials with spin‐orbit operators. II. K through Kr. The Journal of Chemical Physics 1986; 84: 6840-6853.
  • A.D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 1988; 38: 3098-3100.
  • C. Lee, W. Yang, R.G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988; 37: 785.
  • J.A. Dean. Properties of atoms, radicals, and bonds. Lange's Handbook of Chemistry, 1999; 4.
  • H. Zhou, H. Tamura, S. Takami, M. Kubo, R. Belosloudov, N. Zhanpeisov. A. Miyamoto, Periodic density functional study on adsorption properties of organic molecules on clean Al (111) surface. Applied Surface Science 2000; 158: 38-42.
  • A. Sebetci. Cobalt clusters and their anions. Chemical Physics 2008; 354: 196-201.
  • Q.M. Ma, Z. Xie, J. Wang, Y. Liu, Y.C. Li. Structures, stabilities and magnetic properties of small Co clusters. Physics Letters, Section A: General, Atomic and Solid State Physics 2006; 358: 289-296.
  • M. Castro, C. Jamorski, D.R. Salahub. Structure, bonding, and magnetism of small Fen, Con, and Nin clusters, n ≤ 5. Chemical Physics Letters 1997; 271: 133-142.
  • S. Datta, M. Kabir, S. Ganguly, B. Sanyal, T. Saha-Dasgupta, A. Mookerjee. Structure, bonding, and magnetism of cobalt clusters from first-principles calculations. Physical Review B 2007; 76: 014429.
  • C. Jamorski, A. Martinez, M. Castro, D.R. Salahub. Structure and properties of cobalt clusters up to the tetramer: A density-functional study. Physical Review B - Condensed Matter and Materials Physics 1997; 55: 10905-10921.
  • H. Yoshida, A. Terasaki, K. Kobayashi, M. Tsukada, T. Kondow. Spin‐polarized electronic structure of cobalt cluster anions studied by photoelectron spectroscopy. The Journal of Chemical Physics 1995; 102: 5960-5965.