Audiological differences in healthy individuals with generalized joint hypermobility: a case-control study

Objectives: Despite the prevalence of generalized joint hypermobility (GJH), the audiological functions of individuals with GJH have not been documented. This study aimed to investigate audiological findings in individuals with GJH. Methods: This observational, cross-sectional, controlled study was conducted between May 2017 and August 2017. The mean age of all participants was 20.25 ± 0.75 years (range: 19-22 years). The generalized joint hypermobility consisted of individuals with a Beighton score of ≥ 5, while the controls with a Beighton score of ≤ 4. Pure-tone audiometry, immittance audiometry, and Transient Evoked Otoacoustic Emsission (TEOAE) testing were performed on subjects with generalized joint hypermobility (n = 25, mean age: 20.24 ± 0.72 years) and sex- and age-matched healthy controls (n = 31, mean age: 20.26 ± 0.77 years). Results: There were no significant differences in the mean hearing thresholds between the groups, although six (5.4%) ears in the GJH group had thresholds > 15 dB at one (five ears) or more frequencies. Significant differences were detected between the groups in the left ear for TEOAEs at 4 kHz and acoustic reflex thresholds. Conclusions: Individuals with GJH have some audiological differences that may be a predictor of changes related to future hearing loss. Further studies that involve larger samples and include participants of different ages are needed in order to determine whether individuals with GJH are more prone to hearing loss.

___

  • 1. Scheper M, Engelbert R, Rameckers E, Verbunt J, Remvig L, Juul-Kristensen B. Children with generalised joint hypermobility and musculoskeletal complaints: state of the art on diagnostics, clinical characteristics, and treatment. Biomed Res Int 2013;2013:121054.
  • 2. Juul-Kristensen B, Schmedling K, Rombaut L, Lund H, Engelbert RH. Measurement properties of clinical assessment methods for classifying generalized joint hypermobility - A systematic review. Am J Med Genet C Semin Med Genet 2017;175:116-47.
  • 3. Zweers MC, Hakim AJ, Grahame R, Schalkwijk J. Joint hypermobility syndromes: the pathophysiologic role of tenascin-X gene defects. Arthritis Rheum 2004;50:2742-9.
  • 4. Castori M, Tinkle B, Levy H, Grahame R, Malfait F, Hakim A. A framework for the classification of joint hypermobility and related conditions. Am J Med Genet C Semin Med Genet 2017;175:148-57.
  • 5 Clinch J, Deere K, Sayers A, Palmer S, Riddoch C, Tobias JH, et al. Epidemiology of generalized joint laxity (hypermobility) in fourteen-year-old children from the UK: a population-based evaluation. Arthritis Rheum 2011;63:2819-27.
  • 6. Beighton P, Solomon L, Soskolne CL. Articular mobility in an African population. Ann Rheum Dis 1973;32:413-8.
  • 7. Tuna F. Prevalence of joint hypermobility, hypermobility spectrum disorder and hypermobile Ehlers-Danlos syndrome in a university population: an observational study. Eur Res J 2020;6:120-9.
  • 8. Engelbert RH, Juul‐Kristensen B, Pacey V, De Wandele I, Smeenk S, Woinarosky N, et al. The evidence-based rationale for physical therapy treatment of children, adolescents, and adults diagnosed with joint hypermobility syndrome/hypermobile Ehlers Danlos syndrome. Am J Med Genet C Semin Med Genet 2017;175:158-67.
  • 9. Acke FR, Dhooge IJ, Malfait F, De Leenheer EM. Hearing impairment in Stickler syndrome: a systematic review. Orphanet J Rare Dis 2012;7:1-10.
  • 10. Baumann M, Giunta C, Krabichler B, Rüschendorf F, Zoppi N, Colombi M, et al. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am J Hum Genet 2012;90:201-16.
  • 11. Kreicher KL, Weir FW, Nguyen SA, Meyer TA. Characteristics and progression of hearing loss in children with Down syndrome. J Pediatr 2018;193:27-33.
  • 12. Nightengale E, Yoon P, Wolter-Warmerdam K, Daniels D, Hickey F. Understanding hearing and hearing loss in children with Down syndrome. Am J Audiol 2017;26:301-8.
  • 13. Pillion JP, Vernick D, Shapiro J. Hearing loss in osteogenesis imperfecta: characteristics and treatment considerations. Genet Res Int. 2011;2011:983942.
  • 14. Weir FW, Hatch JL, Muus JS, Wallace SA, Meyer TA. Audiologic outcomes in Ehlers-Danlos syndrome. Otol Neurotol 2016;37:748-52.
  • 15. Castori M, Colombi M. Generalized joint hypermobility, joint hypermobility syndrome and Ehlers-Danlos syndrome, hypermobility type. Am J Med Genet C Semin Med Genet 2015;169:1-5.
  • 16. Tuna F, Doğanlar ZB, Özdemir H, Demirbag Kabayel D, Doğanlar O. Ehlers-Danlos syndrome-related genes and serum strontium, zinc, and lithium levels in generalized joint hypermobility: a case-control study. Connect Tissue Res 2021;62:215-25.
  • 17. Nerlich A. Collagen types in the middle ear mucosa. Eur Arch Otorhinolaryngol 1995;252:443-6.
  • 18. Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international classification of the Ehlers–Danlos syndromes. Am J Med Genet C Semin Med Genet 2017;175:8-26.
  • 19. Acke FR, Swinnen FK, Malfait F, Dhooge IJ, De Leenheer EM. Auditory phenotype in Stickler syndrome: results of audiometric analysis in 20 patients. Eur Arch Otorhinolaryngol 2016;273:3025-34.
  • 20. Swinnen FK, Coucke PJ, De Paepe AM, Symoens S, Malfait F, Gentile FV, et al. Osteogenesis imperfecta: the audiological phenotype lacks correlation with the genotype. Orphanet J Rare Dis 2011;6:88.
  • 21. Szymko-Bennett YM, Mastroianni MA, Shotland LI, Davis J, Ondrey FG, Balog JZ, et al. Auditory dysfunction in Stickler syndrome. Arch Otolaryngol Head Neck Surg 2001;127:1061-8.
  • 22. Neumann J, Uppenkamp S, Kollmeier B. Detection of the acoustic reflex below 80 dB HL. Audiol Neurootol 1996;1:359-69.
  • 23. Arnold DJ, Lonsbury-Martin BL, Martin GK. High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions. Arch Otolaryngol Head Neck Surg 1999;125:215-22.
  • 24. Berlin C, Hood L, Jeanfreau J, Morlet T, Brashears S, Keats B. The physiological bases of audiological management. Hair Cell Micromechanisms and Otoacoustic Emissions: Thomson-Delmar Learning. 2002.
  • 25. Hood LJ, Brashears S, Long GR, Talmadge CL. Understanding subtle changes in auditory function with otoacoustic emissions. Proceedings of Meetings on Acoustics ICA2013; 2013: Acoustical Society of America.
  • 26. Dhar S, Hall III JW. Otoacoustic emissions: Principles, procedures, and protocols: Plural Publishing; 2018.