Pathophysiology of metalloproteinase matrix in relation to morbid obesity and associated pathologies

Matrix Metalloproteinases (MMPs), these calcium-dependent zinc-containing endopeptidases play an important role in adipogenesis and angiogenesis by modifying tissues and degrading the extracellular matrix (ECM). Matrix glycoproteins, gelatin, collagens, proteoglycans and elastin are all found in the ECM. Current meta-analysis confirmed the lower levels of IL-6 and CRP was found following bariatric surgery. Several studies have shown correlations between E-selectin levels, BMI, and MMP-9 levels. There was also a strong link between the metalloproteinases MMP-2 and MMP-9. MMP-2 and adiponectin levels are related. MMP-9 levels, on the other hand, were modestly linked with E-selectin and HDL cholesterol levels, as previously stated. Also current observations imply that alterations in the ECM caused by MMP-mediated degradation may be crucial for the differentiation of adipocytes. The most crucial component of this is that MMPs are involved in the remodeling of tissue after gastric bypass surgery, as revealed by these markers (especially MMP-2 and MMP-9). Thus, it is tempting to assume that adipocyte derived MMPs may constitute a novel pharmaceutical target for limiting adipose tissue development through the reduction of adipocyte differentiation and angiogenesis. MMP-2 exhibits far more accurate oscillations than MMP-9 during pre- and post-surgical weight fluctuations, and hence may be used as a predictor for gastric bypass success. The purpose of this paper is to conduct a comprehensive review of the literature with an emphasis on the critical functions that MMPs have in the pathophysiology of obesity and the related diseases.

___

  • 1. Lee YJ, Heo YS, Park HS, Lee SH, Lee SK, Jang YJ. Serum SPARC and matrix metalloproteinase-2 and metalloproteinase-9 concentrations after bariatric surgery in obese adults. Obes Surg 2014;24:604-10.
  • 2. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463-516.
  • 3. Ress C, Tschoner A, Ciardi C, Laimer MW, Engl JW, Sturm W, et al. Influence of significant weight loss on serum matrix metalloproteinase (MMP)-7 levels. Eur Cytokine Netw 2010;21:65-70.
  • 4. Deng ZB, Liu Y, Liu C, Xiang X, Wang J, Cheng Z, et al. Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology 2009;50:1412-20.
  • 5. Popov Y, Schuppan D. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. Hepatology 2009;50:1294-306.
  • 6. Guldiken S, Demir M, Arikan E, Turgut B, Azcan S, Gerenli M, et al. The levels of circulating markers of atherosclerosis and inflammation in subjects with different degrees of body mass index: soluble CD40 ligand and high-sensitivity C-reactive protein. Thromb Res 2007;119:79-84.
  • 7. Hanusch-Enserer U, Zorn G, Wojta J, Kopp CW, Prager R, Koenig W, et al. Non-conventional markers of atherosclerosis before and after gastric banding surgery. Eur Heart J 2009;30:1516-24.
  • 8. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655-69.
  • 9. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005;115:209-18.
  • 10. Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008;371:838-51.
  • 11. Mirica RM, Ionescu M, Mirica A, Ginghina O, Iosifescu R, Rosca A, et al. Quality of life assessment after bariatric surgery-- a single-center experience. Indian J Surg 2018;80:435-41.
  • 12. Mirica RM, Ionescu M, Mirica A, Ginghina O, Iosifescu R, Rosca A, et al. The important roles of matrix metalloproteinases in the pathophysiology of obesity. Rev Chim 2017;68:1481-4.
  • 13. de Meijer VE, Sverdlov DY, Le HD, Popov Y, Puder M. Tissue-specific differences in inflammatory infiltrate and matrix metalloproteinase expression in adipose tissue and liver of mice with diet-induced obesity. Hepatol Res 2012;42:601-10.
  • 14. Domienik-Karłowicz J, Rymarczyk Z, Dzikowska-Diduch O, Lisik W, Chmura A, Demkow U, et al. Emerging markers of atherosclerosis before and after bariatric surgery. Obes Surg 2015;25:486-93.
  • 15. Lijnen HR, Demeulemeester D, Van Hoef B, Collen D, Maquoi E. Deficiency of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) impairs nutritionally induced obesity in mice. Thromb Haemost 2003;89:249-55.
  • 16. Claffey KP, Wilkison WO, Spiegelman BM. Vascular endothelial growth factor. Regulation by cell differentiation and activated second messenger pathways. J Biol Chem 1992;267:16317-22.
  • 17. Mirica RM, Ionescu M, Mirica A, Ginghina O, Iosifescu R, Rosca A, et al. Matrix metalloproteinases in obesity after gastric bypass surgery -- an experimental study . Indian J Surg 2020. DOI: 10.1007/s12262-020-02462-x
  • 18. Rao SR. Inflammatory markers and bariatric surgery: a meta-analysis. Inflamm Res 2012;61:789-807.
  • 19. Derosa G, D'Angelo A, Scalise F, Avanzini MA, Tinelli C, Peros E, et al. Comparison between metalloproteinases-2 and -9 in healthy subjects, diabetics, and subjects with acute coronary syndrome. Heart Vessels 2007;22:361-70.
  • 20. Boden G, Song W, Pashko L, Kresge K. In vivo effects of insulin and free fatty acids on matrix metalloproteinases in rat aorta. Diabetes 2008;57:476-83.
  • 21. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 2002;90:251-62.
  • 22. Yang PJ, Ser KH, Lin MT, Nien HC, Chen CN, Yan WS, et al. Diabetes associated markers after bariatric surgery: fetuin-A, but not matrix metalloproteinase-7, is reduced. Obes Surg 2015;25:2328-34.
  • 23. Wilkison WO, Choy L, Spiegelman BM. Biosynthetic regulation of monobutyrin, an adipocyte-secreted lipid with angiogenic activity. J Biol Chem 1991;266:16886-91.
  • 24. Kubo Y, Kaidzu S, Nakajima I, Takenouchi K, Nakamura F. Organization of extracellular matrix components during differentiation of adipocytes in long-term culture. In Vitro Cell Dev Biol Anim 2000;36:38-44.
  • 25. Nakajima I, Yamaguchi T, Ozutsumi K, Aso H. Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation 1998;63:193-200.
  • 26. Kuri-Harcuch W, Argüello C, Marsch-Moreno M. Extracellular matrix production by mouse 3T3-F442A cells during adipose differentiation in culture. Differentiation 1984;28:173-8.
  • 27. Bouloumié A, Sengenès C, Portolan G, Galitzky J, Lafontan M. Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation. Diabetes 2001;50:2080-6.
  • 28. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493-503.
  • 29. Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 2006;69:614-24.
  • 30. Newby AC. Do metalloproteinases destabilize vulnerable atherosclerotic plaques? Curr Opin Lipidol 2006;17:556-61.
  • 31. de Meijer VE, Sverdlov DY, Popov Y, Le HD, Meisel JA, Nose V, et al. Broad-spectrum matrix metalloproteinase inhibition curbs inflammation and liver injury but aggravates experimental liver fibrosis in mice. PLoS One 2010;5:e11256.
  • 32. de Meijer VE, Le HD, Meisel JA, Akhavan Sharif MR, Pan A, Nosé V, et al. Dietary fat intake promotes the development of hepatic steatosis independently from excess caloric consumption in a murine model. Metabolism 2010;59:1092-105.
  • 33. Ailhaud G, Grimaldi P, Négrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 1992;12:207-33.
  • 34. Zangani D, Darcy KM, Masso-Welch PA, Bellamy ES, Desole MS, Ip MM. Multiple differentiation pathways of rat mammary stromal cells in vitro: acquisition of a fibroblast, adipocyte or endothelial phenotype is dependent on hormonal and extracellular matrix stimulation. Differentiation 1999;64:91-101.
  • 35. Szczęsny W, Kuligowska-Prusińska M, Dąbrowiecki S, Szmytkowski J, Reśliński A, Słupski M. Activity of metalloproteinases and adiponectin in obese patients-a possible factor of incisional hernias after bariatric procedures. J Zhejiang Univ Sci B 2018;19:65-70.
  • 36. Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 2005;288:H2031-41.
  • 37. Krebs M, Geiger M, Polak K, Vales A, Schmetterer L, Wagner OF, et al. Increased plasma levels of plasminogen activator inhibitor-1 and soluble vascular cell adhesion molecule after triacylglycerol infusion in man. Thromb Haemost 2003;90:422-8.
  • 38. Iribarren C. Lipoprotein-associated phospholipase A2 and cardiovascular risk: state of the evidence and future directions. Arterioscler Thromb Vasc Biol 2006;26:5-6.
  • 39. Freedman JE. CD40 ligand--assessing risk instead of damage? N Engl J Med 2003;348:1163-5.
  • 40. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259:87-91.
  • 41. Grzechocińska B, Dąbrowski FA, Sierdzinski J, Cyganek A, Wielgoś M. The association between serum metalloproteinase concentration, obesity, and hormone levels in reproductive-aged women. Endokrynol Pol 2019;70:49-56.
  • 42. Blann AD, Lip GY. Hypothesis: is soluble P-selectin a new marker of platelet activation? Atherosclerosis 1997;128:135-8.
  • 43. Marx N, Imhof A, Froehlich J, Siam L, Ittner J, Wierse G, et al. Effect of rosiglitazone treatment on soluble CD40L in patients with type 2 diabetes and coronary artery disease. Circulation 2003;107:1954-7.
  • 44. Varo N, Vicent D, Libby P, Nuzzo R, Calle-Pascual AL, Bernal MR, et al. Elevated plasma levels of the atherogenic mediator soluble CD40 ligand in diabetic patients: a novel target of thiazolidinediones. Circulation 2003;107:2664-9.
  • 45. Bermudez EA, Rifai N, Buring J, Manson JE, Ridker PM. Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol 2002;22:1668-73.
  • 46. Henn V, Slupsky JR, Gräfe M, Anagnostopoulos I, Förster R, Müller-Berghaus G, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998;391:591-4.
  • 47. Déchanet J, Grosset C, Taupin JL, Merville P, Banchereau J, Ripoche J, et al. CD40 ligand stimulates proinflammatory cytokine production by human endothelial cells. J Immunol 1997;159:5640-7.
  • 48. Slupsky JR, Kalbas M, Willuweit A, Henn V, Kroczek RA, Müller-Berghaus G. Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thromb Haemost 1998;80:1008-14.
  • 49. Zhou L, Stordeur P, de Lavareille A, Thielemans K, Capel P, Goldman M, et al. CD40 engagement on endothelial cells promotes tissue factor-dependent procoagulant activity. Thromb Haemost 1998;79:1025-8.
  • 50. Silva SA, Gobbo MG, Pinto-Fochi ME, Rafacho A, Taboga SR, Almeida EA, et al. Prostate hyperplasia caused by long-term obesity is characterized by high deposition of extracellular matrix and increased content of MMP-9 and VEGF. Int J Exp Pathol 2015;96:21-30.
  • 51. André P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, et al. CD40L stabilizes arterial thrombi by a beta3 integrin--dependent mechanism. Nat Med 2002;8:247-52.
  • 52. Henn V, Steinbach S, Büchner K, Presek P, Kroczek RA. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 2001;98:1047-54.
  • 53. Kräling BM, Wiederschain DG, Boehm T, Rehn M, Mulliken JB, Moses MA. The role of matrix metalloproteinase activity in the maturation of human capillary endothelial cells in vitro. J Cell Sci 1999;112 ( Pt 10):1599-609.
  • 54. Owolabi US, Amraotkar AR, Coulter AR, Singam NSV, Aladili BN, Singh A, et al. Change in matrix metalloproteinase 2, 3, and 9 levels at the time of and after acute atherothrombotic myocardial infarction. J Thromb Thrombolysis 2020;49:235-44.
  • 55. Tuomainen AM, Nyyssönen K, Laukkanen JA, Tervahartiala T, Tuomainen TP, Salonen JT, et al. Serum matrix metalloproteinase-8 concentrations are associated with cardiovascular outcome in men. Arterioscler Thromb Vasc Biol 2007;27:2722-8.
  • 56. Sternlicht MD, Bergers G. Matrix metalloproteinases as emerging targets in anticancer therapy: status and prospects. Emerging Ther Targets 2000;4:609-33.
  • 57. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 1997;139:1861-72.
  • 58. Mannello F, Medda V, Ligi D, Raffetto JD. Glycosaminoglycan sulodexide inhibition of MMP-9 gelatinase secretion and activity: possible pharmacological role against collagen degradation in vascular chronic diseases. Curr Vasc Pharmacol 2013;11:354-65.
  • 59. Lillis J, Kendra KE. Acceptance and Commitment Therapy for weight control: Model, evidence, and future directions. J Contextual Behav Sci 2014;3:1-7.
  • 60. Kawano Y, Ohta M, Hirashita T, Masuda T, Inomata M, Kitano S. Effects of sleeve gastrectomy on lipid metabolism in an obese diabetic rat model. Obes Surg 2013;23:1947-56.
  • 61. Kalaivani A, Uddandrao VVS, Parim B, Saravanan G, Nivedha PR, Sushma CK, et al. Reversal of high fat diet-induced obesity through modulating lipid metabolic enzymes and inflammatory markers expressions in rats. Arch Physiol Biochem 2019;125:228-34.
  • 62. Esquivel AL, Pérez-Ramos J, Cisneros J, Herrera I, Rivera-Rosales R, Montaño M, et al. The effect of obesity and tobacco smoke exposure on inflammatory mediators and matrix metalloproteinases in rat model. Toxicol Mech Methods 2014;24:633-43.
  • 63. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013;93:359-404.