Ortak Kullanım Alanlarında Hava Kökenli Kültür Edilebilir Bakteri Konsantrasyonlarının Değişimi

Kentsel hayatın hızlı yaşandığı ve açık alanlarda kalış süresinin en aza indiği günümüz teknolojik döneminde, özellikle İstanbul gibi kalabalık metropollerde yaşayan insanların sağlığı için iç ortam kalitesi önemli bir unsurdur. İç ortam havasını kirleten unsurların başında gelen biyoaerosollerin en önemli parçası “hava kaynaklı bakteriler”dir. Mikrobiyal kontaminasyonun da etkisi ile konsantrasyonu artan bu bakteriler, iç ortamlarda zamanla olumsuz sağlık koşulları oluşturabilmektedir.Bu çalışmada, farklı ortak kullanım alanlarından, aktif hava örnekleme yöntemi ile alınan örneklerde; kültür edilebilir hava kaynaklı bakteri (culturable airborne bacteria: CAB) konsantrasyonlarının belirlenmesi amaçlanmıştır. İkincil amaç olarak, belirlenen iç ortamlardaki kişi sayısı, bu kişilerin ortamda geçirdikleri ortalama süre ve diğer fiziksel faktörlerin, CAB konsantrasyonları ile olası etkileşimi hedeflenmiştir. Bina içerisinde kullanım amaçlarına göre farklılık gösteren, kantin, dershane, ofis ve koridor gibi ortak kullanım alanları; ev ortamında dinlenme odaları, mutfak ve banyo ile birçok çalışmada özellikle tercih edilen, çocukların oyun ve kullanım alanı olan kreş ortamlarından örnekleme yapılmıştır.Elde edilen sonuçlara göre, CAB konsantrasyonu ile ortamdaki kişi sayısı, ortamda bulunma süresi ve aktif hareket etkisi etkileşimi açıkça görülmektedir. Ev ortamında tespit edilen ortalama CAB değerleri (2*103 CFU/m3), ofis ortamlarındaki değerlerden (6*10 CFU/m3) daha yüksek bulunmuştur. Ancak ortak kullanım alanları olan koridorlarda bu değer 2630 CFU/m3’e kadar ulaşabilmektedir. Tüm çalışma dönemi içerisinde ev ortamında ölçülen en yüksek değer 4160 CFU/m3 ile banyoda tespit edilirken, farklı kullanım alışkanlıkları mutfakta ölçülen CAB değerlerini ortalama 2*102 CFU/m3 ile sınırlandırmıştır. Kreşte ise çocukların aktif oyun anında alınan örneklemede 8970 CFU/m3 değeri ölçülmüştür. Kreşe ait en yüksek değer aynı zamanda çalışmanın da en yüksek değeridir. Tüm örnekleme süresince, kreş örneklerindeki CAB konsantrasyonundaki ölçüm farklılığını; sıklıkla uygulanması önerilen iç ortam havasının dış ortamla tazelenmesi ve böylece ortam sıcaklığının ve bağıl neminin de dengelenmesi faktörlerine bağlamak olasıdır.

Changes of the Concentrations of Culturable Airborne Bacteria in Common Indoor Areas of the Buildings

In the technological era where city life style is intensive and time spent on outdoors are minimized, especially in the crowded metropolises such as Istanbul, indoor air quality is an important element for the sake of human health. Main pollution cause of the indoors is bioaerosols and most important part of bioaerosols is “airborne bacteria”. Increased concentrations of these bacteria with help of microbial contamination may cause unfavorable health conditions indoor over time. In this study, determination of concentration of culturable airborne bacteria (CAB) is aimed by the technique of active air sampling from different communal indoor areas. Secondary objectives are determining number of people in these areas, average time they spend indoor and probable interactions between CAB concentration and other physical factors. Areas differ from each other according to their purpose of use are chosen for sampling. These areas have been chosen as cantina, classroom, office and hallways for schools; rest room, kitchen and bathroom for residents and as many other studies prefer to pick, we also have chosen kindergarten which is playground and general usage area for children. According to obtained results, relationship between CAB concentration and number of people, time spent in the area and active motion effect can be seen clearly. Average CAB value determined in the residential indoor is (2*103 CFU/m3) observed to be higher than average CAB value determined for office environment (6*10 CFU/m3). However, for hallways, which are communal school areas, CAB value can be as high 2630 CFU/m3. During the study, as the highest observed value 4160 CFU/m3 CAB for residential environment is observed in bathroom, in the kitchen where there are different usage habits, average CAB value is limited with 2*102 CFU/m3. In the kindergarten, samples taken during the active play time of children CAB values is determined as 8970 CFU/m3. This value is also the highest amount observed during the study. During entire process, difference of the measured CAB concentration for kindergarten may be linked to ventilation of indoors, which is advised to be applied frequently, via balancing temperature and relative moist of the environment.

___

  • KAYNAKLAR [1] WHO, 2006, “Development of WHO Guidelines for Indoor Air Quality, Report on a Working Group Meeting Bonn”, Germany, 23-24 October 2006. [2] WHO, 2006, “Air Quality Guidelines Global Update, Executive Summary”, World Health Organization, Geneva, Switzerland, http://www.who.int/phe/air/aqg2006execsum.pdf (Erişim Tarihi: 04.01.2017/17:05). [3] Kalogerakis, N., Paschali, D., Lekaditis, V., Pantiduo, A., Eleftheriadis, K., Lazaridis, M., “Indoor Air Quality-Bioaerosol Measurements in Domestic and Office Premises”, Journal of Aerosol Science, 36, 751-761, 2005. [4] Indermitte, E., “Microbial Status of Indoor Air In Office Buildings In Estonia”, Proceedings of 5th Valamo Conference on Environmental Health and Risk Assessment, 15, 2001. [5] Moritz, M., Peters, H., Nipko, B., Ruden, H., “Capability of Air Filters to Retain Airborne Bacteria and Molds in Heating, Ventilating and Air-Conditioning (HVAC Systems), Int. J. Hyg. Environ, Health, 203, 401-409, 2001. [6] Kim, K. Y., Kim, C. N., “Airborne Microbiological Characteristics in Public Buildings of Korea”, Building and Environment, 42 (5), 2188-2196, 2006. [7] Güllü, G., Menteşe, S., “İç Ortam Havasında Biyoaerosol Düzeyleri”, VIII. Ulusal Tesisat Mühendisliği Kongresi, Teskon, 357-364, İzmir, 2007. [8] Weikl, F., Tischer, C., Probst, A. J., Heinrich, J., Markevych, I., Jochner, S., et al., “Fungal and Bacterial Communities in Indoor Dust Follow Different Environmental Determinants” Plos One, 11(4), E0154131, 2016. [9] Mandal, J., Brandl, H., “Bioaerosols In Indoor Environment - A Review With Special Reference to Residential end Occupational Locations”, The Open Environmental & Biological Monitoring Journal, 4, 83-96, 2011. [10] url 1: http://www.biomerieux-usa.com/sites/subsidiary_us/files/samplair_broc.pdf (Erişim Tarihi: 04.01.2017/17:05). [11] url 2: ISO/FDIS, (14698-1) 2003). ISO/FDIS 14698-1, 2003, Cleanrooms and Associated Controlled Environments – Biocontamination Control – Part 1: General Principles and Methods, General Principles and Methods, (http://www.icccs.net/news/contamctrlstdsschicht.pdf ) (Erişim Tarihi: 04.01.2017/17:05). [12] Si̇vri̇, N., Bağcigi̇l, A. F., Meti̇ner, K., Şeker, D. Z., Orak, S., Güneş Durak, S., Sönmez, V. Z., “Culturable Airborne Bacteria and Isolation of Methicillin-Resistant Coagulase-Negative Staphylococci From Outdoor Environments on European Side of Istanbul, Turkey”, Archives of Environmental Protection, 3, 77-86, 2016. [13] Onat, B., Alver Şahi̇n, Ü., Si̇vri̇, N., “The Relationship Between Particle and Culturable E Bacteria Concentrations in Public Transportation", Indoor and Built Environment, 2 (2) 215, 2016. [14] Morgan, M. D., Small, A. M., Mckay, C. M., Gomez-Silva, B., ve Rainey, F. A., Aeromicrobiology Along a Precipitation Gradient in the Atacama Desert, Chile, Abstracts of the 104th General Meeting of the American Society of Microbiology, New Orleans La, 437, 2004. [15] Northcutt, J. K., Jones, D. R. ve Musgrove, M. T., Airborne Microorganisms During the Commercial Production and Processing of Japanese Quail, International Journal of Poultry Science, 3 (4): 242-247, 2004. [16] Jensen, P. A., Lighthart, B., Mohr, A. J., Shaffer, B. T., “Instrumentation Used With Microbial Bioaerosol”, In: Lighthart, B., Mohr, A. J., Eds. “Atmospheric Microbial Aerosols: Theory and Applications”, New York, Ny: Chapman & Hall, pp. 226-284, 1994. [17] Morawska, L., “Droplet Fate in Indoor Environments, or Can We Prevent the Spread of Infection?”, Indoor Air, 16, 335-347, 2006. [18] Noble, W. C., Habbema, J. D. F., Van Furth, R., Smith, I. and De Raay, C., “Quantitative Studies on the Dispersal of Skin Bacteria Into the Air”, J. Med. Microbiol., 9, 53-61, 1976. [19] Bhangar, B., Huffman, J. A., Nazaroff, W. W., “Size-Resolved Fluorescent Biological Aerosol Particle Concentrations and Occupant Emissions in a University Classroom”, Indoor Air, 24, 604-617, 2014. [20] Qian, J., Hospodsky, D., Yamamoto, N., Nazaroff, W. W., Peccia, J., “Size-Resolved Emission Rates of Airborne Bacteria and Fungi in an Occupied Classroom”, Indoor Air, 22, 339-351, 2012. [21] Aydoğdu, H., Asan, A., Otkun, M. T., Ture, M., “Monitoring of Fungi and Bacteria in the Indoor Air of Primary Schools in Edirne City, Turkey”, Indoor and Built Environment, 14(5): 411-425, 2005. [22] Adams, R. I., Miletto, M., Taylor, J. W., Bruns, T. D., “Dispersal In Microbes: Fungi In Indoor Air Are Dominated By Outdoor Air and Show Dispersal Limitation At Short Distances”, Isme J., 7(7):1262-73, 2013. [23] Kembel, S. W., Jones, E., Kline, J., Northcutt, D., Stenson, J., Womack, A. M., et al., “Architectural Design Influences the Diversity and Structure of the Built Environment Microbiome”, Isme J., 6(8), 1469-79, 2012. [24] Meadow, J. F., Altrichter, A. E., Kembel, S. W., Kline, J., Mhuireach, G., Moriyama, M., et al., “Indoor Airborne Bacterial Communities are Influenced by Ventilation, Occupancy and Outdoor Air Source”, Indoor Air, 24(1), 41-8, 2014. [25] Hospodsky, D., Qian, J., Nazaroff, W. W., Yamamoto, N., Bibby, K., Rismani-Yazdi, H., et al., “Human Occupancy as a Source of Indoor Airborne Bacteria”, Plos One, 7(4), E34867, 2012. [26] Jo, W. K., Seo, Y. J., “Indoor and Outdoor Bioaerosol Levels at Recreation Facilities, Elementary Schools and Homes”, Chemosphere, 61, 1570-1579, 2005. [27] Flores, G. E., Bates, S. T., Knights, D., Lauber, C. L., Stombaugh, J., Knight, R., et al., “Microbial Biogeography of Public Restroom Surfaces”, Plos One, 6(11): E28132, 2011. [28] Flores, G. E., Bates, S. T., Caporaso, J. G., Lauber, L. L., Leff, J. W., Knight, R., Fierer, N., “Diversity, Distribution and Sources of Bacteria In Residential Kitchens”, Enviromental Microbiology, 15(2): 588-596, 2013. [29] Rusin, P., Orosz-Coughlin, P., Gerba, C., “Reduction of Faecal Coliform, Coliform and Heterotrophic Plate Count Bacteria in the Household Kitchen and Bathroom by Disinfection With Hypochlorite Cleaners”, Journal of Applied Microbiology, 85, 819-828, 1998. [30] Sinclair, R. G., Gerba, C. P., “Microbial Contamination in Kitchens and Bathrooms of Rural Cambodian Village Households”, Letters In Applied Microbiology, 52, 144-149, 2011. [31] Ojima, M., Toshima, Y., Koya, E., Ara, K., Kawai, S., et al., “Bacterial Contamination of Japanese Households and Related Concern About Sanitation”, International Journal of Environmental Health Research, 12, 41-52, 2002. [32] Medrano-Felix, A., Martinez, C., Castro-Del Campo, N., Leon-Felix, J., Perazagaray, F., et al., “Impact of Prescribed Cleaning and Disinfectant Use on Microbial Contamination in the Home” Journal of Applied Microbiology, 110, 463-471, 2011. [33] Adams, R. I., Miletto, M., Lindow, S. E., Taylor, J. W., Bruns, T. D., “Airborne Bacterial Communities in Residences: Similarities and Differences With Fungi”, Plos One, 9(3), E91283, 2014. [34] Barberan, A., Dunn, R. R., Reich, B. J., Pacifici, K., Laber, E. B., Menninger, H. L., et al., “The Ecology of Microscopic Life in Household Dust”, Proc Biol Sci., 282, 1814, 2015. [35] Wanner, H. U., Verhoff, A., Colombi̇, A., et al., “Biological Particles in Indoor Environments. European Collaborative Action ‘Indoor Air Quality and Its Impact on Man’”, Commission of the European Communities, Report no. 12. Luxembourg, 1994.