Nem Alma Malzeme Kaplamalı Isı Değiştiriciler ve Sistem Performansı Değerlendirmeleri

Nem alma, evsel ve ticari binalarda iklimlendirme kontrolü için büyük önem taşı maktadır. Farklı nem alma yöntemleri bulunmaktadır. Soğurucu kullanarak nem alma bu yöntemler arasındadır. Son dönemlerde katı adsorban (soğurucu) kulla nılan sistemlerde döner çark sisteminin yerine katı adsorban kaplamalı ısı değişti ricilerin kullanılması önerilmektedir. Bu sistemler, bir atık ısı kaynağı veya güneş enerjisi kullanılarak gerçekleştirilebilecek adsorpsiyon işlemi ile enerji verimli bir şekilde nem alma sağlayan geleneksel iklimlendirme işlemlerine kıyasla daha iyi bir araçtır. Nem alma malzeme kaplamalı ısı değiştirici, bu tip sistemler için anah tar bir bileşendir. Bu çalışmada, nem alma malzeme kaplamalı ısı değiştiriciler ve sistem performansına olan etkileri günümüze kadar yapılan deneysel ve simulasyon çalışmaları ve bu çalışmalarda elde edilen bulgulara yer verilerek araştırılmıştır.

Desiccant Coated Heat Exchangers and Evaluations of System Performance

Dehumidification is of great importance for climate control in residential and com mercial buildings. Different methods of dehumidification are available. Moisture re moval using the absorbents or adsorbents is among these methods. In recent years, solid adsorbent coated heat exchangers have been proposed to be used instead of rotary sorbent systems in solid adsorbent systems. These systems are a better tools compared to traditional air conditioning processes, which enable energy-efficient dehumidification by adsorption that can be accomplished using a waste heat source or solar energy. The adsorbent-coated heat exchanger is a key component for such systems. In this study, adsorbent material coated heat exchangers and its effects to the system performance were investigated, including experimental and simulated studies completed to daytime and the findings obtained in these studies.

___

  • [1] G. W. Brundrett, Handbook of Dehumidification Technology, London; Boston: Butterworths, 1987.
  • [2] Desiccant-Assisted Cooling, New York: Springer, 2013.
  • [3] S. K. Henninger, F. Jeremias, H. Kummer, P. Schossig, and H.-M. Henning, “Novel Sorption Materials for Solar Heating and Cooling”, Energy Procedia, vol. 30, pp. 279–288, 2012.
  • [4] Z. Li, S. Michiyuki, and F. Takeshi, “Experimental Study on Heat and Mass Transfer Characteristics for a Desiccant-Coated Fin-Tube Heat Exchanger”, International Journal of Heat and Mass Transfer, vol. 89, pp. 641–651, Oct. 2015.
  • [5] P. Vivekh, M. Kumja, D. T. Bui, and K. J. Chua, “Recent Developments in Solid Desiccant Coated Heat Exchangers – A Review”, Applied Energy, vol. 229, pp. 778–803, Nov. 2018.
  • [6] D. La, Y. J. Dai, Y. Li, R. Z. Wang, and T. S. Ge, “Technical Development of Rotary Desiccant Dehumidification and Air Conditioning: A review”, Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 130–147, Jan. 2010.
  • [7] D. B. Jani, M. Mishra, and P. K. Sahoo, “Performance Prediction of Rotary Solid Desiccant Dehumidifier in Hybrid Air-Conditioning System Using Artificial Neural Network”, Applied Thermal Engineering, vol. 98, pp. 1091– 1103, Apr. 2016.
  • [8] Dwyer, T., “https://www.cibsejournal.com/ cpd/modules/2014-12/ Liquid Desiccants For Dehumidification in Building Air Conditioning Systems”, 2014.
  • [9] “Dehumidifiers, 2018, Difference Between Desiccant & Refrigerant Type Industrial Dehumidifier, https://www.dehumidifier-uae. com/industrial-dehumidifier/industrial-dehumidifier-vs-desiccant-commercial-dehumidifier.”
  • [10] Y. Weixing, Z. Yi, L. Xiaoru, and Y. Xiugan, “Study of a New Modified Cross-Cooled Compact Solid Desiccant Dehumidifier”, Applied Thermal Engineering, vol. 28, no. 17–18, pp. 2257–2266, Dec. 2008.
  • [11] T. S. Ge, Y. J. Dai, and R. Z. Wang, “Performance Study of Silica Gel Coated Fin-Tube Heat Exchanger Cooling System Based on a Developed Mathematical Model”, Energy Conversion and Management, vol. 52, no. 6, pp. 2329–2338, Jun. 2011.
  • [12] T. S. Ge, Y. J. Dai, Y. Li, and R. Z. Wang, “Simulation Investigation on Solar Powered Desiccant Coated Heat Exchanger Cooling System”, Applied Energy, vol. 93, pp. 532– 540, May 2012.
  • [13] T. S. Ge, Y. J. Dai, R. Z. Wang, and Y. Li, “Feasible Study of a Self-Cooled Solid Desiccant Cooling System Based on Desiccant Coated Heat Exchanger,” Applied Thermal Engineering, vol. 58, no. 1–2, pp. 281–290, Sep. 2013.
  • [14] G. M. Munz et al., “First Results of a Coated Heat Exchanger for the use in Dehumidification and Cooling Processes”, Applied Thermal Engineering, vol. 61, no. 2, pp. 878–883, Nov. 2013.
  • [15] X. Zheng, R. Z. Wang, and T. S. Ge, “Experimental Study and Performance Predication of Carbon Based Composite Desiccants for Desiccant Coated Heat Exchangers”, International Journal of Refrigeration, vol. 72, pp. 124–131, Dec. 2016.
  • [16] T. S. Ge, Y. J. Dai, R. Z. Wang, and Z. Z. Peng, “Experimental Comparison and Analysis on silica Gel and Polymer Coated Fin-Tube Heat Exchangers”, Energy, vol. 35, no. 7, pp. 2893– 2900, Jul. 2010.
  • [17] A. Freni, L. Bonaccorsi, L. Calabrese, A. Caprì, A. Frazzica, and A. Sapienza, “SAPO34 Coated Adsorbent Heat Exchanger for Adsorption Chillers”, Applied Thermal Engineering, vol. 82, pp. 1–7, May 2015.
  • [18] L. M. Hu, T. S. Ge, Y. Jiang, and R. Z. Wang, “Performance Study on Composite Desiccant Material Coated Fin-Tube Heat Exchangers”, International Journal of Heat and Mass Transfer, vol. 90, pp. 109–120, Nov. 2015.
  • [19] Y. Jiang, T. S. Ge, R. Z. Wang, and L. M. Hu, “Experimental Investigation and Analysis of Composite Silica-Gel Coated Fin-Tube Heat Exchangers”, International Journal of Refrigeration, vol. 51, pp. 169–179, Mar. 2015.
  • [20] Y. Zhao, Y. J. Dai, T. S. Ge, H. H. Wang, and R. Z. Wang, “A High Performance Desiccant Dehumidification Unit Using Solid Desiccant Coated Heat Exchanger With Heat Recovery”, Energy and Buildings, vol. 116, pp. 583–592, Mar. 2016.
  • [21] A. Li, K. Thu, A. B. Ismail, M. W. Shahzad, and K. C. Ng, “Performance of Adsorbent-Embedded Heat Exchangers Using Binder-Coating Method”, International Journal of Heat and Mass Transfer, vol. 92, pp. 149–157, Jan. 2016.
  • [22] P. Bendix et al., “Optimization of Power Density and Metal-To-Adsorbent Weight Ratio in Coated Adsorbers for Adsorptive Heat Transformation Applications”, Applied Thermal Engineering, vol. 124, pp. 83–90, Sep. 2017.
  • [23] M. Tatlier, “Performances of MOF vs. Zeolite Coatings in Adsorption Cooling Applications”, Applied Thermal Engineering, vol. 113, pp. 290–297, Feb. 2017.
  • [24] S. J. Oh, K. C. Ng, W. Chun, and K. J. E. Chua, “Evaluation of a Dehumidifier With Adsorbent Coated Heat Exchangers for Tropical Climate Operations”, Energy, vol. 137, pp. 441–448, Oct. 2017.
  • [25]J. Y. Zhang, T. S. Ge, Y. J. Dai, Y. Zhao, and R. Z. Wang, “Experimental Investigation on Solar Powered Desiccant Coated Heat Exchanger Humidification Air Conditioning System in Winter”, Energy, vol. 137, pp. 468–478, Oct. 2017.