Isıl Konfor İçin Nesnelerin İnterneti Kullanımı

Isıl konfor bireyin içerisinde bulunduğu ya da çalıştığı koşullardan memnun olma durumudur. Isıl konfor indeksi ise bireyin daha etkili ve verimli çalışması için bulunulan ortamdaki koşulların en uygun duruma getirilmesi için önemlidir. Isıl konfor indeksinin sürekli olarak izlenip ısıtma-havalandırma sistemininin en uygun değerlere ayarlanması nesnelerin interneti ile mümkündür. Bu çalışmada WSN (Kablosuz Sensör Ağı), Android, WI-FI (Kablosuz Bağlantı) gibi değişik platformlar kullanılarak ısıl konfor parametrelerinin nesnelerin interneti ile izlenmesi, kontrol edilmesi ve sonuç olarak ısıl konfor indeksinin iyileştirilmesi üzerine yapılmış bazı çalışmalar incelenmiştir.

Usage of Internet of Things for Thermal Comfort

Thermal comfort is the state of being satisfied with the conditions in which the individual is working or occupying. The thermal comfort index is important for optimizing the conditions in the environment for the individual to work more effectively and efficiently. It is possible to monitor the thermal comfort index continuously and to adjust the heating-ventilation system to the most suitable values. In this study, some studies on the monitoring and controlling of thermal comfort parameters hence improvement of thermal comfort index with internet of things (IOT) by using different platforms like WSN, Android and WI-FI were investigated.

___

  • [1] Hoppe, P., Martinac, I., “Indoor Climate and Air Quality”, Int. Journal of Biometeorol, 42: 1-7, 1998.
  • [2] Fanger, P.O., “Human Requirements in Future Air-Conditioning Environments”, International Journal of Refrigeration, 24: 148-153, 2001.
  • [3] Haghighat, F., Donnini, G., “Impact of Psyc – Social Factors on Perception of the Indoor Air Environment Studies in 12 Office Buildings”, Building and Environment, 34: 479-503, 1999.
  • [4] “ASHRAE Handbook – Fundamentals, Chapter 8”, Atlanta: American Society of Heating, Refrigeration and Air-Conditioning Engineers, 29p, 1993.
  • [5] “ASHRAE Handbook – Fundamentals, Chapter 37”, Atlanta: American Society of Heating, Refrigeration and Air-Conditioning Engineers, 1993.
  • [6] “ISO 7730, Moderate Thermal Environments – Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort”, International Organization for Standardization, Geneva, 1995.
  • [7] Kim, Joyce, Stefano Schiavon, and Gail Brager, “Personal Comfort Models–A new Paradigm in Thermal Comfort for Occupant-Centric Environmental Control”, Building and Environment 132 (2018): 114-124.
  • [8] Ray, Partha Pratim, “Internet of Things Cloud Enabled MISSENARD Index Measurement For Indoor Occupants”, Measurement 92 (2016): 157-165.
  • [9] Shetty, Sindhu S., "Learning Desk Fan Usage Preferences for Personalised Thermal Comfort in Shared Offices Using Tree-Based Methods”, Building and Environment, (2018).
  • [10] Chaudhuri, Tanaya, “Random Forest Based Thermal Comfort Prediction from Gender- Specific Physiological Parameters Using Wearable Sensing Technology”, Energy and Buildings 166 (2018): 391-406.
  • [11] Martín-Garín, A., “Environmental monitoring system based on an Open Source Platform and the Internet of Things for a Building Energy Retrofit”, Automation in Construction 87 (2018): 201-214.
  • [12] Ramli, “Investigating Thermal Comfort for the Classroom Environment Using IoT”, Indonesian Journal of Electrical Engineering and Computer Science 9.1 (2018): 157-163.
  • [13] Laftchiev, Emil, Daniel Nikovski., “An IoT System to Estimate Personal Thermal Comfort”, Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on. IEEE, 2016.
  • [14] Jia, Feipeng, “Home Network Monitoring System Based on Internet of Things”, IOP Conference Series: Materials Science and Engineering. Vol. 452. No. 4. IOP Publishing, 2018.
  • [15] Kumar, P., Martanı, C., Morawska, L., Norford, L., Choudhary, R., Bell, M., & Leach, M., “Indoor Air Quality and Energy Management Through Real-Time Sensing in Commercial Buildings”, Energy and Buildings 111 (2016): 145-153.
  • [16] Zhang, X., Adhikari, R., Pipattanasomporn, M., Kuzlu, M., & Rahman, S., “Deploying IoT Devices to Make Buildings Smart: Performance Evaluation and Deployment Experience, In Internet of Things (WF-IoT)”, 2016 IEEE 3rd World Forum on (pp. 530-535).
  • IEEE, 2016, December.17] Ciabattoni̇, L., Ferracuti, F., Ippoliti, G., Longhi, S., & Turri, "IoT Based Indoor Personal Comfort Levels Monitoring”, In Consumer Electronics (ICCE), 2016 IEEE International Conference on (pp. 125-126). IEEE, 2016, January.
  • [18] Happle, G., Wilhelm, E., Fonseca, J. A., & Schlueter, A., “Determining Air-Conditioning Usage Patterns in Singapore From Distributed, Portable Sensors”, Energy Procedia, 122, 313- 318, 2017.
  • [19] Lachhab, F., Bakhouya, M., Ouladsine, R., & Essaaidi, M., “Towards an Intelligent Approach for Ventilation Systems Control Using IoT and Big Data Technologies”, Procedia Computer Science, 130, 926-931, 2018.
  • [20] Carreira, P., Costa, A. A., Mansu, V., & Arsénio, A., “Can HVAC Really Learn From Users? A Simulation-Based Study on the Effectiveness of Voting for Comfort and Energy Use Optimisation”, Sustainable Cities and Society. (2018).
  • [21] Lilis, G., Conus, G., Asadi, N., & Kayal, M. “Towards the Next Generation of Intelligent Building: An Assessment Study of Current Automation and Future IoT Based Systems with a Proposal for Transitional Design”, Sustainable cities and society, 28, 473-481, 2017.