Bir Gizli Isıl Enerji Depolama Tankının Akış Modülünün 2 Boyutlu Sayısal İncelenmesi

Bu çalışmada, güneş enerjisi kaynaklı GIED sisteminin ön analizi sunulmaktadır. Güneş kolektöründen elde edilen yüksek sıcaklıktaki iş akışkanı (su) depolama tankı içerisinde bulunan küresel kapsüller üzerinden akmakta ve kapsüllerin içindeki FDM erimektedir. İçe doğru erime problemine akış Reynolds sayısı ve küre sayısının etkisi parametrik olarak incelenmiştir. İndirgenmiş model silindirik bir kanal ve kürelerden oluşmaktadır. Sayısal analiz bulguları hidrodinamik ve ısıl olmak üzere iki kısımda sunulmuştur. Üç küreli sistem için yüksek Reynolds sayılarında küreler arasında oluşan sirkülasyon hücrelerinin boyutlarının arttığı tespit edilmiştir. Artan akış Reynolds sayısına bağlı olarak tek ve üç küreli sistemde FDM’nin erimeye başlama süreleri azalmakta ve buna bağlı olarak akış süresi sonunda kürelerin toplam erime yüzdeleri artmaktadır.

2D Numerical Investigation of the Flow Modul of a Latent Heat Thermal Energy Storage Tank

In this study, preliminary analysis of solar energy based LHTES system is presented. The high temperature working fluid (water) from the solar collector flows over the spherical capsules in the storage tank and the PCM in the capsules melts. The effect of the Reynolds number and the number of sphere on the flow to the problem of inward melting was studied parametrically. The reduced model consists of a cylindrical channel and spheres. Numerical analysis findings are presented in two parts as hydrodynamic and thermal. It has been found that the size of the circulation bubbles formed between the spheres in the high Reynolds numbers for the system with three sphere increases. Due to the increased flow Reynolds number, the start times of PCM start to decrease in systems of single and three spheres and accordingly, the total melt percentages of the spheres increase at the end of the flow period.

___

  • [1] Amar M. Khudhair, Mohammed M. Farid, “A review On Energy Conservation In Building Applications With Thermal Storage By Latent Heat Using Phase Change Materials”, Energy Conversion and Management 45(2):263-275 · January 2004.
  • [2] Erek, A., Ezan, M. A., Experimental And Numerical Study On Charging Processes Of An Ice‐On‐Coil Thermal Energy Storage System, International Journal Of Energy Research, 31(2), 158-176, 2007.
  • [3] Erek, A., Dinçer, İ., An Approach To Entropy Analysis Of A Latent Heat Storage Module, International Journal of Thermal Sciences, 47(8), 1077-1085, 2008.
  • [4] Erek, A., Dinçer, İ., A New Approach To Energy And Exergy Analyses Of Latent Heat Storage Unit, Heat Transfer Engineering, 30(6), 506-515, 2009.
  • [5] Ezan, M. A., Erek, A., Solidification and Melting Periods of an Ice-on-Coil Latent Heat Thermal Energy Storage System, Journal of Heat Transfer, 134 (6), 062301, 2012.
  • [6] Seki, Y., İnce, Ş., Ezan, M. A., Turgut, A., Erek, A., Graphite Nanoplates Loading Into Eutectic Mixture Of Adipic Acid And Sebacic Acid As Phase Change Material, Solar Energy Materials and Solar Cells, 140, 457-463, 2015.
  • [7] Seki, Y., Ince, S., Ezan, M. A., Turgut, A., Erek, A., Development And Evaluation Of Graphite Nanoplate (GNP)‐Based Phase Change Material For Energy Storage Applications, International Journal of Energy Research, 39(5), 696- 708, 2015.
  • [8] İnce, Ş., Seki, Y., Ezan, M. A., Turgut, A., Erek, A. (2015). Thermal properties of myristic acid/ graphite nanoplates composite phase change materials. Renewable Energy, 75, 243-248.
  • [9] Bedecarrats, J. P., Strub, F., Falcon, B., Dumas, J. P. (1996). Phase-change thermal energy storage using spherical capsules: performance of a test plant.International Journal of Refrigeration, 19(3), 187-196.
  • [10] Bédécarrats, J. P., Castaing-Lasvignottes, J., Strub, F., Dumas, J. P., Study Of A Phase Change Energy Storage Using Spherical Capsules, Part I: Experimental Results. Energy Conversion and Management, 50(10), 2527- 2536, 2009.
  • [11] Veerappan, M., Kalaiselvam, S., Iniyan, S., Goic, R., Phase Change Characteristic Study Of Spherical PCMs in Solar Energy Storage, Solar Energy, 83(8), 1245-1252, 2009.
  • [12] Ezan, M. A., Uzun, M., Erek, A., A study On Evaluation of Effective Thermal Conductivity For Spherical Capsules, International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 2014.
  • [13] RUBITHERM Technologies GmBh datasheets
  • [14] Maheshwari, A., Chhabra, R. P., Biswas, G., Effect of Blockage On Drag and Heat Transfer From A Single Sphere and an In-Line Array of Three Spheres, Powder Technology, 168(2), 74-83, 2006.