TERMOFİKSAJ İŞLEMLERİ İÇİN RAMÖZ ATIK HAVASINDAN ISI GERİ KAZANIM SİSTEMİNİN ENERJİ VE EKSERJİ ANALİZİ

Enerji geri kazanım uygulamaları, doğal kaynakların verimli kullanılması adına sürdürülebilir üretimin temel koşullarından birisidir. Tekstil terbiye işletmelerinde uygulanan süreçler sonucunda oldukça fazla miktarda atık enerji ortaya çıkmaktadır. Bu atık enerjinin geri kazanılması hem ekonomik hem de çevresel fayda sağlamaktadır. Bu çalışma kapsamında tekstil terbiye işletmelerinde kullanılan ramözlerin atık havasından ısı geri kazanımı analiz edilmiştir. İncelenen işletme ölçekli ısı geri kazanım sisteminde kuru termofiksaj havası ile işletme suyu ısıtılmaktadır. Sistemin termodinamik modeli enerji ve ekserji analizleri ile sunulmuştur. Sistemde ısıtılan suyun sıcaklığını etkileyen en önemli parametrenin su debisi olduğu görülmüştür. Düşük su debilerinde 70-75 °C'de sıcak su elde etmek mümkündür. Su debisi azaldıkça sistemde ortaya çıkan ekserji tahribi azalmakta, ekserji verimi artmaktadır. Isı geri kazanım sisteminin ekserji verimi su debisine bağlı olarak %10 ile %30 aralığında değişmektedir.

ENERGY AND EXERGY ANALYSIS OF STENTER EXHAUST AIR HEAT RECOVERY SYSTEM FOR HEAT-SETTING PROCESSES

Energy recovery applications are of great importance for sustainable production with regard to efficient use of natural sources. Textile finishing processes generates large amount of waste energy. Recovery of this waste energy provides both economic and environmental benefits. In the scope of this study, heat recovery from the exhaust air of textile stenters was analysed. Process water is heated by the exhaust air of thermosetting process in an industrial scale heat recovery system retrofitted to a stenter. Thermodynamic model of the system was presented by energy and exergy analyses. Mass flow rate of water was observed to be the most significant parameter that affects the temperature of water outlet. 70-75 °C water outlet temperatures can be obtained at lower waste water mass flow rates. Decrease in the mass flow rate of water led to decrease in exergy destruction and increase in exergy efficiency. Exergy efficiency of the system was calculated between 10% and 30% depending on the mass flow rate of water.

___

  • 1. Integrated Pollution Prevention and Control (IPPC), (2002), Reference Document on Best Available Techniques (BAT) for the Textiles Industry, European Commission Directorate-General Joint Research Centre.
  • 2. Brückner Stenters and ECO-HEAT back-pack - heat recovery unit on dryer lower the energy consumption and other inputs at Lucky Tex Processing Mills, Special Mill Report, Pakistan Textile Journal, October 2012, 32-34.
  • 3. Brückner to present sustainable solutions at ITMA 2015, Innovation in textiles, 2015, http://www.innovationintextiles.com/ brckner-to-present-sustainable-solutions-at-itma2015/#sthash.v8AyQsOx.dpuf (Erişim tarihi: 09.06.2016).
  • 4. Stenter frame range Montex 6500, Integrated heat recovery, www.mongfongs.com (Erişim tarihi: 09.06.2016).
  • 5. Efficient heat recovery modules, Innovation in textiles, 2015, http://www.innovationintextiles.com/packaging/efficient-heatrecovery-modules/ (Erişim tarihi: 09.06.2016).
  • 6. Italian textile producers reap benefits of heat recovery system, Application reports, www.monforts.de (Erişim tarihi: 09.06.2016).
  • 7. Energy Tower 7000, Stand-alone module for heat recovery, Energy saving, www.monforts.de (Erişim tarihi: 09.06.2016).
  • 8. Eco Booster HRC, Energy saving, www.monforts.de (Erişim tarihi: 09.06.2016).
  • 9. Oğulata, R.T., (2004), Utilization of waste-heat recovery in textile drying, Applied Energy, 79, 41-49.
  • 10. Şekkeli, M., Keçecioğlu, Ö.F., (2012), Scada based an energy saving approach to operation of stenter machine in a textile plant using waste heat recovery system, Tekstil ve Konfeksiyon, 22(3), 248-257.
  • 11. Tarakçıoğlu, I., Karaaslan, M.A., Çay, A., (2008), An experimental study on the heat recovery from the exhaust air of stenters with a packed bed column, International Journal of Energy Research, 32, 648-654.
  • 12. Çengel, Y.A., Boles, M.A., (2001), Thermodynamics: An Engineering Approach, 4th ed., McGraw-Hill, New York.
  • 13. Bejan, A., Tsatsaronis, G., Moran, M., (1995), Thermal Design and Optimization, Wiley, New York.
  • 14. Kotas, T.J., (1995), The Exergy Method of Thermal Plant Analysis, Krieger Publishing, Malabar, FL.
  • 15. Moran, M.J., (2000), Exergy Analysis, in The CRC Handbook of Thermal Engineering. Ed. Kreith, F., CRC Press, Boca Raton, FL.
  • 16. Szargut, J., Morris, D.R., Steward, F.R., (1998), Exergy Analysis of Thermal, Chemical and Metallurgical Processes, Hemisphere Publishing Corporation, New York.
  • 17. De Palmenaer, A., Seide, G., Gries, T., (2015), Exergetic analysis of the thermal conversion process in PAN-based carbon fibre production, Tekstil ve Mühendis, 22(97), 7-13.
  • 18. Manfrida, G., (1984), Improvements in energy savings by means of second-law analysis: An application to textile industrial plants, Heat Recovery Systems, 4(5), 329-332.
  • 19. Cay, A., Tarakçıoğlu, I., Hepbasli, A., (2007), Exergetic performance assessment of a stenter system in a textile finishing mill, International Journal of Energy Research, 31(13), 1251-1265.
  • 20. Cay, A., Tarakçıoğlu, I., Hepbasli, A., (2009), A study on the exergetic analysis of continuous textile dryers, International Journal of Exergy, 6(3), 422-439.
  • 21. Cay, A., Tarakçıoğlu, I., Hepbasli, A., (2010), Exergetic analysis of textile convective drying with stenters by sub-system models: Part 1- Exergetic modeling and evaluation, Drying Technology, 28(12), 1359-1367.
  • 22. Cay, A., Tarakçıoğlu, I., Hepbasli, A., (2009), Assessment of finishing processes by exhaustion principle for textile fabrics: An exergetic approach, Applied Thermal Engineering, 29, 2554- 2561.
  • 23. Mozes, E., Cornelissen, R.L., Hirs, G.G., Boom, R.M.. (1998), Exergy analysis on the conventional textile washing process, Energy Conversion and Management, 39(16-18), 1835-1843.
  • 24. Cay, A., Ozguney, A.T., Yavas, A., (2012), Application of exergy analysis to textile printing process, Fibres & Textiles in Eastern Europe, 20(95), 37-42.
  • 25. Kandilli, C., Koclu, A., (2011), Assessment of the optimum operation conditions of a plate heat exchanger for waste heat recovery in textile industry, Renewable and Sustainable Energy reviews, 15, 4424-4431.
  • 26. Tesisat dergisi, Sanayide 1000 kcal ısı ihtiyacı için gerekli olan çeşitli yakıtlar için maliyet karşılaştırma tablosu (27 Temmuz 2017 yakıt fiyatları, sanayi), http://www.tesisat.com.tr/yayin/ yakitfiyatlari/ (Erişim tarihi: 18.08.2017).
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası
Sayıdaki Diğer Makaleler

SPUNBOND DOKUSUZ TEKSTİL YÜZEYİ ÜZERİNE ELEKTRO ÇEKİM YÖNTEMİ İLE NANO BOYUTTA GRAFEN KAPLANMASI VE KARAKTERİZASYONU

M. Hakkı ALMA, MUSTAFA YAZICI, Behzat YILDIRIM, TUFAN SALAN, İSMAİL TİYEK

ATKI İPLİK NUMARASI VE ATKI SIKLIĞININ HAM VE AĞARTILMIŞ DİMİ 3/1(S) DOKUMA KUMAŞLARDA İPLİK KIVRIMINA ETKİSİ

DENİZ MUTLU ALA, GAMZE GÜLŞEN BAKICI

Ribana Kumaşların Hava ve Su Buharı Geçirgenliklerine İlmek ve Atlama Kombinasyonların Etkisi

Palanisamy KANAKARAJ, Rajagopalan RAMACHANDRAN

RİBANA KUMAŞLARIN HAVA VE SU BUHARI GEÇİRGENLİKLERİNE İLMEK VE ATLAMA KOMBİNASYONLARIN ETKİSİ

Palanisamy KANAKARAJ, Rajagopalan RAMACHANDRAN

FONKSİYONEL BİR YELKEN GİYSİSİ TASARIMI İÇİN SPORCU GEREKSİNİMLERİNİN BELİRLENMESİ

ŞÜKRAN KARA, MUZAFFER SEVİL YEŞİLPINAR

Kompozit Malzeme Üretiminde Kullanılacak Bitkisel Liflerin Alkali Modifikasyonu Sonrası Morfolojik ve Kimyasal Yapılarındaki Değişimin İncelenmesi

Yasemin SEKİ, Figen SELLİ, Korhan ŞEN, Ümit Halis ERDOĞAN

ELEKTRONİK TEKSTİLLERE YÖNELİK AKILLI KUMAŞ SENSÖRLERİ

AYŞE DİDEM EROL, SUAT ÇETİNER

KESİKLİ POLİESTER VE DIŞ/İÇ DÜŞÜK SICAKLIKTA ERİYEN KESİKLİ POLİESTER BAĞLAYICI LİFLERİNDEN TARAK, İĞNELEME VE PRES MAKİNELERİ İLE ÜRETİLMİŞ DOKUNMAMIŞ KUMAŞLARIN MUKAVEMET ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA

MUSTAFA SABRİ ÖZEN

Kesikli Poliester ve Dış/İç Düşük Sıcaklıkta Eriyen Kesikli Poliester Bağlayıcı Liflerinden Tarak, İğneleme ve Pres Makineleri ile Üretilmiş Dokunmamış Kumaşların Mukavemet Özellikleri Üzerine Bir Araştırma

Mustafa Sabri ÖZEN

Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri

Ayşe Didem EROL, Suat ÇETİNER