SÜPERHİDROFOB TEKSTİL YÜZEYLERİN FLORSUZ BİLEŞİKLER KULLANILARAK SOL-JEL YÖNTEMİ İLE MODİFİKASYONU

Tekstil materyallerine hidrofob karakter kazandırmak için yapılan işlemler birçok çalışmanın temel konusunu oluşturmaktadır. Konvansiyonel yöntemlerde yaygın olarak kullanılan florlu bileşiklerin insan ve çevre açısından yarattığı tehditler su iticilikte yeni arayışları da beraberinde getirmiştir. Sol-jel yöntemi ile florsuz bileşikler kullanılarak nano boyutlarda sağlanan su itici özellikler yüzey modifikasyonunda önemli bir konu haline gelmiştir. Bu yöntem ile üretilen silika nanopartiküller genellikle hidrofob silan ve çapraz bağlayıcı silanlar ile modifiye edilerek yüzeye uygulanmaktadır. Bu sayede, yüzeylerin hem su itici özelliği hem de yıkama dayanımlarında artış sağlanabilmektedir. Bu çalışmada su iticilikte kullanılan temel terimler, ıslanma olayı ve bununla ilgili hesaplamalar, sol-jel yöntemi ve bu yöntemde kullanılan florsuz bileşikler hakkında bilgi verilecektir.

MODIFICATION OF SUPERHYDROPHOBIC TEXTILE SURFACES WITH SOL-GEL METHOD BY USING NONFLUORINATED COMPOUNDS

Different processes used to make textile materials to gain hydrophobic character are the main subjects of many studies. The threat posed to human and environment by fluorinated compounds commonly used in the conventional methods has brought new searches in water repellency. The water repellent properties in nanoscale with using non-fluorinated compounds by sol-gel method have become an important issue in surface modification. Silica nanoparticles, which are produced by this method, are applied to textile surface through modification of the hydrophobic silanes and silane crosslinkers. In this way, both water repellent and washing durability properties of textile surface can be enhanced. In this paper, basic terms used in the water repellency, wetting event phenomena and related calculations, sol-gel method and non-fluorinated compounds used as water repellents are discussed.

___

  • 1. Nosonovsky, M., Bhushan, B., (2008), Roughness-Induced Superhydrophobicity: A Way to Design Non-Adhesive Surfaces, Journal Of Physics: Condensed Matter, 20, 22, 225009.
  • 2. Bhushan, B., Koch, K., Jung, Y. C., (2008), Nanostructures for Superhydrophobicity and Low Adhesion, Soft Matter, 4, 9, 1799-1804.
  • 3. Ma, M., Hill, R.M., (2006), Superhydrophobic Surfaces, Current Opinion in Colloid & Interface Science, 11(4), 193-202.
  • 4. Wenzel, R. N., (1936), Resistance of Solid Surfaces to Wetting by Water, Industrial & Engineering Chemistry, 28, 8, 988-994.
  • 5. Schuyten, H. A., Reid, J. D., Weaver, J. W., Frick, J. G., (1948), Imparting Water-Repellency to Textiles by Chemical Methods - A Review of the Literature, Textile Research Journal, 18, 490−503.
  • 6. Bahners, T., Textor, T., Opwis, K., Schollmeyer, E., (2008), Recent Approaches to Highly Hydrophobic Textile Surfaces, Journal of Adhesion Science and Technology, 22(3-4), 285-309.
  • 7. Nosonovsky, M., Bhushan, B., (2008), Energy Transitions in Super Hydrophobicity: Low Adhesion, Easy Flow and Bouncing, Journal of Physics Condensed Matter, 20, 395005, 6pp.
  • 8. Erbil, Y.H., Uçar, İ., (2010), Kir Tutmayan Yüzeyler, Bilim ve Teknik, sayfa:51-57.
  • 9. Joneydi, S., Khoddami, A., Zadhoush, A., (2013), Novel Superhydrophobic Top Coating on Surface Modified PVC-Coated Fabric, Progress in Organic Coatings, 76, 5, 821-826.
  • 10. Schindler, W. D., Hauser, P. J., (2004), Chemical Finishing of Textiles, Elsevier, Woodhead Publishing, p:224, ISBN: 9781845690373
  • 11. Zhang, X., Shi, F., Niu, J., Jiang, Y., Wang, Z., (2008). Superhydrophobic Surfaces: From Structural Control to Functional Application, Journal of Materials Chemistry, 18(6), 621-633.
  • 12. Jung, Y. C., Bhushan, B., (2009), Wetting Behavior of Water and Oil Droplets in Three-Phase Interfaces for Hydrophobicity/Philicity and Oleophobicity/Philicity, Langmuir, 25, 24, 14165-14173.
  • 13. Nosonovsky, M., Bhushan, B., (2009), Superhydrophobic Surfaces and Emerging Applications: Non-Adhesion, Energy, Green Engineering, Current Opinion in Colloid & Interface Science, 14, 4, 270-280.
  • 14. http://iteknano.com/Technology.html [Erişim Tarihi: 21.10.2016]
  • 15. Akcalı, K., Oktav Bulut, M., (2012), Plazma Teknolojilerinin Yün Elyafı Üzerindeki Etkileri Üzerine Bir İnceleme, Mühendislik Bilimleri ve Tasarım Dergisi, cilt:2, sayı:1, s.65-72.
  • 16. Barthlott, W., Neinhuis, C., (1997), Purity of The Sacred Lotus, or Escape From Contamination in Biological Surfaces, Planta, 202, 1, 1-8.
  • 17. Saraf, R., Lee, H. J., Michielsen, S., Owens, J., Willis, C., Stone, C., Wilusz, E., (2011), Comparison of Three Methods for Generating Superhydrophobic, Superoleophobic Nylon Nonwoven Surfaces, Journal of Materials Science, 46, 17, 5751-5760.
  • 18. Lee, H. J., Willis, C. R., Stone, C. A., (2011), Modeling and Preparation of A Super-Oleophobic Non-Woven Fabric, Journal of Materials Science, 46, 11, 3907-3913.
  • 19. Roach, P., Shirtcliffe, N. J., Newton, M. I., (2008), Progess in Superhydrophobic Surface Development, Soft Matter, 4, 2, 224-240.
  • 20. Nosonovsky, M., Bhushan, B., (2007), Hierarchical Roughness Optimization for Biomimetic Superhydrophobic Surfaces, Ultramicroscopy, 107, 10, 969-979.
  • 21. Pan, Y., Bhushan, B., Zhao, X., (2014), The Study of Surface Wetting, Nanobubbles and Boundary Slip with an Applied Voltage: A Review, Beilstein Journal of Nanotechnology, 5(1), 1042-1065.
  • 22. Balcı, H., (2006), Akıllı (Fonksiyonel) Tekstiller, Seçilmiş Kumaşlarda Antibakteriyel Apre ve Performans Özellikleri, Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Tekstil Mühendisliği Anabilim Dalı, Adana.
  • 23. Extrand, C. W., Kumagai, Y., (1997), An Experimental Study of Contact Angle Hysteresis. Journal of Colloid and Interface Science, 191, 2, 378-383.
  • 24. Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., Watanabe, T., (2000), Effects of The Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langmuir, 16, 13, 5754-5760.
  • 25. Sas, I., Gorga, R.E., Joines, J.A., Thoney, K.A., (2012), Literature Review on Superhydrophobic Self-Cleaning Surfaces Produced by Electrospinning, Journal of Polymer Science Part B-Polymer Physics, 50, 12, 824-845.
  • 26. Lafuma, A., Quéré, D., (2003), Superhydrophobic States, Nature Materials, 2, 7, 457-460.
  • 27. Aminayi, P., Abidi, N., (2013), Imparting Superhydro/oleophobic Properties to Cotton Fabric by Means of Molecular and Nanoparticles Vapor Deposition Methods, Applied Surface Science, 287, 223-231.
  • 28. Blossey, R., (2003), Self-cleaning Surfaces-Virtual Realities, Nature Materials, 2, 5, 301-306.
  • 29. Shirtcliffe, N. J., McHale, G., Atherton, S., Newton, M. I., (2010), An Introduction to Superhydrophobicity, Advances in Colloid and Interface Science, 161, 1, 124-138.
  • 30. Balkenende, A. R., Van de Boogaard, H. J. A. P., Scholten, M., Willard, N. P., (1998), Evaluation of Different Approaches to Assess The Surface Tension of Low-Energy Solids by Means of Contact Angle Measurements. Langmuir, 14, 20, 5907-5912.
  • 31. Rame – hart Contact Angle Goniometers and Tensiometers, Glossary of Surface Science Terms, http://www.ramehart.com/ glossary.htm [Erişim Tarihi: 05.01.2015]
  • 32. Lee, H. J., Owens, J. R., (2010), Design of Superhydrophobic Ultraoleophobic Nyco, Journal of Materials Science, 45, 12, 3247-3253.
  • 33. https://en.wikipedia.org/wiki/Wetting [Erişim Tarihi: 05.01.2015]
  • 34. Sanjay, S. L., Annaso, B. G., Chavan, S. M., Rajiv, S.V., (2012), Recent Progress in Preparation of Superhydrophobic Surfaces: A Review, Journal of Surface Engineered Materials and Advanced Technology, 2012.
  • 35. Cassie A, Baxter S., (1944), Wettability of Porous Surfaces, Transactions of the Faraday Society, 40, 546–51.
  • 36. Ağırgan, A.Ö., Kanat, Z.E., Özek, H.Z., (15), Nano Partiküllü Su İticilik Maddeleriyle İşlem Görmüş Pamuk Ve Polyester Dokuma Kumaşların Karşılaştırması, Tekstil ve Mühendis, Sayı:69, Sayfa:7-13.
  • 37. Onar, N., Mete, G., Aksit, A., Kutlu, B., Celik, E. (2015), Water-and Oil-Repellency Properties of Cotton Fabric Treated with Silane, Zr, Ti based Nanosols, International Journal of Textile Science, 4(4), 84-96.
  • 38. Xu, L., Zhuang, W., Xu, B., Cai, Z., (2011), Fabrication of Superhydrophobic Cotton Fabrics by Silica Hydrosol and Hydrophobization, Applied Surface Science, 257(13), 5491-5498.
  • 39. Černe, L., Simončič, B., (2004), Influence of Repellent Finishing on The Surface Free Energy of Cellulosic Textile Substrates, Textile Research Journal, 74(5), 426-432.
  • 40. Lewandowski, G., Meissner, E., Milchert, E., (2006), Special Applications of Fluorinated Organic Compounds, Journal of Hazardous Materials, 136(3), 385-391.
  • 41. Tang W., Huang Y., Qing F.L., (2011), Synthesis and Characterization of Fluorinated Polyacrylate Graft Copolymers Capable as Water and Oil Repellent Finishing Agents, Journal of Applied Polymer Science, Vol. 119, 84–92.
  • 42. Bae, G. Y., Min, B. G., Jeong, Y. G., Lee, S. C., Jang, J. H., Koo, G. H., (2009), Superhydrophobicity of Cotton Fabrics Treated with Silica Nanoparticles and Water-Repellent Agent, Journal of Colloid and Interface Science, 337(1), 170-175.
  • 43. Gowri, S., Almeida, L., Amorim, T., Carneiro, N., Souto, A. P., Esteves, M. F., (2010), Polymer Nanocomposites for Multifunctional Finishing of Textiles-A Review, Textile Research Journal, 80(13), 1290-1306.
  • 44. Mete, G., (2013), Sol-jel Teknolojisini Kullanarak Pamuklu Kumaşa Su, Yağ, Iticilik ve Güç Tutuşurluk Özelliklerinin Kazandırılması, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Tekstil Mühendisliği Anabilim Dalı, Denizli, ss:184.
  • 45. Mahltig, B., Böttcher, H., (2003), Modified Silica Sol Coatings for Water-Repellent Textiles, Journal of Sol-Gel Science and Technology, 27(1), 43-52.
  • 46. Daoud, W. A., Xin, J. H., Tao, X., (2004), Superhydrophobic Silica Nanocomposite Coating by a Low‐Temperature Process, Journal of the American Ceramic Society, 87(9), 1782-1784.
  • 47. Latthe, S., Rao A.V., (2012), Superhydrophobic SiO2 Micro-Particle Coating by Spray Method, Surface & Coating Technology, 207, 489-492.
  • 48. Mazrouei-Sebdani, Z., Khoddami, A., (2011), Alkaline Hydrolysis: A Facile Method to Manufacture Superhydrophobic Polyester Fabric by Fluorocarbon Coating, Progress in Organic Coatings, 72(4), 638-646.
  • 49. Ma, M., Mao, Y., Gupta, M., Gleason, K. K., Rutledge, G. C., (2005), Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition, Macromolecules, 38(23), 9742-9748.
  • 50. Yu, M., Gu, G., Meng, W. D., Qing, F. L., (2007), Superhydrophobic Cotton Fabric Coating Based on A Complex Layer of Silica Nanoparticles and Perfluorooctylated Quaternary Ammonium Silane Coupling Agent, Applied Surface Science, 253(7), 3669-3673.
  • 51. Mahltig, B., Helfried, H., Horst, B., (2005), Functionalization of Textiles by Inorganic Sol-Gel Coatings, Journal of Materials Chemistry, 15, 4385-4398.
  • 52. Michael, G., Ferch, H., (1998), Basic Characteristics of Aerosil, Degussa Technical Bulletin, Pigment No. 11.
  • 53. Zhang, J., Seeger, S., (2011), Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption, Advanced Functional Materials, 21(24), 4699-4704.
  • 54. Evcin, A., Sol-jel Prosesleri Ders Notları http://www. kimmuh.com/evcin/sol-gel/solgel3.pdf [Erişim Tarihi: 20.12.2014]
  • 55. Hasançebi, Ö., (2006), Sol-Gel Yöntemiyle Hazırlanan Bakır Oksit İnce Filmlerin Elektriksel, Yapısal ve Optiksel Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Mühendisliği Anabilim Dalı, Ankara.
  • 56. Mai, C., Militz, H., (2004), Modification of Wood With Silicon Compounds. Inorganic Silicon Compounds and Sol-Gel Systems: A Review, Wood Science and Technology, 37, 5, 339-348.
  • 57. Donath, S., Militz, H., Mai, C., (2006), Creating Water-Repellent Effects on Wood by Treatment with Silane, Holzforschung, 60, 1, 40-46.
  • 58. Roe, B.G., (2008), Durable Non-Fluorine Water-Repellent Fabric Finishing: Surface Treatment Using Silica Nanoparticulates and Mixed Silanes, A Thesis, Faculty of North Carolina State University in Partial Fulfillment of The Requirements For The Degree of Master of Science, Textile and Apparel, Technology and Management, Raleigh, North Carolina.
  • 59. Liu, J., Huang, W., Xing, Y., Li, R., Dai, J., (2011), Preparation of Durable Superhydrophobic Surface by Sol–Gel Method with Water Glass and Citric Acid, Journal of Sol-Gel Science And Technology, 58, 1, 18-23.
  • 60. Materne, T., De Buyl, F., Witucki, G. L., (2006), Organosilane Technology in Coating Applications: Review and Perspectives, Dow Corning Corporation, USA.
  • 61. Roe, B., Zhang, X., (2009), Durable Hydrophobic Textile Fabric Finishing Using Silica Nanoparticles and Mixed Silanes, Textile Research Journal, 79, 1115.
  • 62. Pipatchanchai, T., Srikulkit, K., (2007), Hydrophobicity Modification of Woven Cotton Fabric by Hydrophobic Fumed Silica Coating, Journal of Sol-Gel Science and Technology, 44, 2, 119-123.
  • 63. Xue, C.H., Ji, P.T., Zhang, P., Li, Y.R., Jia, S.T., (2013), Fabrication of Superhydrophobic and Superoleophilic Textiles for Oil Water Separation, Applied Surface Science, 284, 464-471.
  • 64. https://en.wikipedia.org/wiki/Tetraethyl_orthosilicate [Erişim Tarihi: 15.12.2014]
  • 65. https://en.wikipedia.org/wiki/Silicon_dioxide [Erişim Tarihi: 15.12.2014]
  • 66. Xu, B., Cai, Z., Wang, W., Ge, F., (2010), Preparation of Superhydrophobic Cotton Fabrics Based on SiO2 Nanoparticles and Zno Nanorod Arrays with Subsequent Hydrophobic Modification, Surface & Coating Technology, 204, 1556-1561.
  • 67. https://tr.wikipedia.org/wiki/Sodyum_silikat [Erişim Tarihi: 18.01.2015]
  • 68. https://en.wikipedia.org/wiki/Citric_acid [Erişim Tarihi: 18.01.2015]
  • 69. https://pubchem.ncbi.nlm.nih.gov/compound/Hexadecyltrimethoxys ilane#section=Top [Erişim Tarihi: 18.01.2015]
  • 70. Li, Z., Xing, Y., Dai, J., (2008), Superhydrophobic Surfaces Prepared from Water Glass and Non-Fluorinated Alkylsilane on Cotton Substrates, Applied Surface Science, 254, pp. 2131-2135.
  • 71. Shang, S.M., Li, Z., Xing, Y., Xin, J.H., Tao, X.M., (2010), Preparation of Durable Hydrophobic Cellulose Fabric From Water Glass and Mixed Organosilanes, Applied Surface Science 257, 1495-1499.
  • 72. Basu, B. J., Hariprakash, V., Aruna, S. T., Lakshmi, R. V., Manasa, J., Shruthi, B. S., (2010), Effect of Microstructure And Surface Roughness on the Wettability of Superhydrophobic Sol–Gel Nanocomposite Coatings, Journal of Sol-gel Science and Technology, 56(3), 278-286.
  • 73. Mahltig, B., Audenaert, F., Böttcher, H., (2005), Hydrophobic Silica Sol Coatings on Textiles—The Influence of Solvent and Sol Concentration, Journal of Sol-gel Science and Technology, 34(2), 103-109.
  • 74. Wang, C. X., Li, M., Jiang, G. W., Fang, K. J., Tian, A. L., (2007), Surface Modification with Silicon Sol on Cotton Fabrics for WaterRepellent Finishing, Research Journal of Textile and Apparel, 11, 3, 27-34.
  • 75. http://www.chemspider.com/Chemical-Structure.15413.html [Erişim Tarihi: 08.02.2015]
  • 76. http://www.chemspider.com/Chemical-Structure.68741.html [Erişim Tarihi: 08.02.2015]
  • 77. http://www.chemspider.com/Chemical-Structure.77027.html [Erişim Tarihi: 08.02.2015]
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası