YÜKSEK PERFORMANSLI KUMAŞ ZIRHLARIN BALİSTİK DAYANIMLARININ SAYISAL OLARAK İNCELENMESİ

Bu çalışmada, yumuşak yapılı kumaş zırhların balistik çarpması sayısal benzetim yoluyla gerçekleştirilmiştir. Simülasyonlar için zırh malzemesi olarak yüksek performanslı kumaş seçilmiştir. Bu şekilde kumaşın balistik çarpma cevabi ileri sonlu farklar yöntemi ile hesaplanmıştır. Düz-uçlu Parçacık Simülasyon Mermisinin (PSM), iki-eksenli kumaşa 90°'lik açı ile dik çarpması analiz edilmiştir. Kare latislerden oluşmuş pim-eklem sisteminde düğüm noktalarındaki eklemler arasındaki iplik parçaları ayrık kütle-yaysönümleyici kullanılarak modellenmiştir. Çarpmadan belli bir süre sonra yer değiştirmeler, hızlardaki değişim, malzemede oluşan göçme miktarı hesaplanmış ve grafiksel olarak gösterilmiştir. Kıvrım etkisinin zırhın balistik performansına olan etkisi incelenerek yorumlanmıştır

NUMERICAL INVESTIGATION OF BALLISTIC RESISTANCE OF HIGH PERFORMANCE FABRIC ARMORS

In this study numerical simulation of ballistic impact is carried out for the soft fabric armors. For the simulations, high performance fabrics are chosen as the armor material. In this manner, the ballistic impact response of the fabric is computed using forward finite difference method. Flat-nosed Fragment Simulation Projectile (FSP) hitting the biaxial composite fabric at an angle 90° is analyzed. The yarn segments between hinged joints at crossovers are modeled using discrete mass-spring-damper in pin-joint systems consisting of planar square lattices. After a certain time of impact; displacement of the fabric, change in the velocities and the failure in the material is computed and depicted graphically. The effect of crimp on the ballistic performance of the fabric is examined and discussed

___

  • 1. Rakhmatulin KhA, (1947): Impact on a flexible fiber, Prikl Mat Mekh 11, 379–82 (Rusça’dan çeviri).
  • 2. Rakhmatulin KhA, (1951): Normal impact at a varying velocity on a flexible fiber Uchenye Zapiski Moskovosk gos Univ 4, 154 (Rusça’dan çeviri).
  • 3. Rakhmatulin KhA, 1952 Normal impact on a flexible fiber by a body of given shape Prikl Mat Mekh 16, 23–24 (Rusça’dan çeviri).
  • 4. Rakhmatulin KhA, Dem’yanov YuA, (1961): Strength Under High Transient Loads, pp 94-152 (İngilizce çevirisi).
  • 5. Roylance D, Wilde A, Tocci G, (1973): Ballistic impact of textile structures, Textile Research Journal, 43, 34–41.
  • 6. Roylance D, Wang S S, (1980): Penetration mechanics of textile structures, Ballistic Materials and Penetration Mechanics, Elsevier, Amsterdam.
  • 7. Ting C, Ting, J, Cunniff P M, Roylance D, (1998): Numerical characterization of the effects of transverse yarn interaction on textile ballistic response, Proceedings of the 30th International SAMPE Technical Conference, 57–67.
  • 8. Cunniff P M, Ting J, (1999): Development of a numerical model to characterize the ballistic behavior of fabrics, Proceedings of the 18th International Symposium on Ballistics, San Antonio TX,15-19 November, 822-828.
  • 9. Roylance D, Chammas P, Ting J, Chi H, Scott B, (1995): Numerical modeling of fabric impact, Proceedings of the National Meeting of the American Society of Mechanical Engineers ASME, San Francisco, October.
  • 10. Zeng X S, Tan V B C, Shim V P W, (2006): Modelling inter-yarn friction in woven fabric armour, Int J Numer Meth Eng 66, 1309– 1330.
  • 11. Zeng X S, Shim V P W, Tan V B C, (2005): Influence of boundary conditions on the ballistic performance of high-strength fabric targets, Int J Impact Eng 32, 631–642.
  • 12. Tan V B C, Shim V P W, Zeng X, (2005): Modelling crimp in woven fabrics subjected to ballistic impact, Int J Impact Eng 32, 561–574.
  • 13. Lim C T, Shim V P W, Ng Y H, (2003): Finite-element modeling of the ballistic impact of fabric armor, Int J Impact Eng 28, 13–31.
  • 14. Shimek M E, Fahrenthold E P (2015): Impact Dynamics Simulation for Multilayer Fabrics of Various Weaves, AIAA Journal, 53, 1793-1811.
  • 15. Shimek M E, Fahrenthold E P (2012): Effects of Weave Type on Ballistic Performance of Fabrics, AIAA Journal, 50, pp 2558-2565.
  • 16. Phoenix S L, Porwal P K, (2003): A new membrane model for ballistic impact response and V50 performance of multi-ply fibrous systems, Int J Solids and Structures, 40, 6723-6765.
  • 17. Porwal P K, Phoenix S L, (2005): Modeling system effects in ballistic impact into multi-layered fibrous materials for soft body armor, Int J Fracture, 135, 217-249.
  • 18. Porwal P K, Phoenix S L, (2008): Effects of layer stacking order on the V50 velocity of a two-layered hybrid armor system, Journal of Mechanics of Materials and Structures, 3, 627-639.
  • 19. Özşahin E, Tolun S, (2010): Yüzey Kaplaması ve Destek Katman İlavesinin Alüminyum Levhaların Balistik Performansına Etkileri, Havacılık Ve Uzay Teknolojileri Dergisi, Cilt:4, Sayı:4, 41-50s.
  • 20. Özşahin E, Tolun S, (2008): Havacılıkta Kullanılan Alüminyum Levhaların Yüksek Hızlı Çarpma Davranışlarının Deneysel Olarak İncelenmesi, II Ulusal Havacılık ve Uzay Konferansı (UHUK’2008) İstanbul Teknik Üniversitesi, İstanbul, 15-17 Ekim.
  • 21. Bozdoğan, F Üngün, S Temel, E Süpüren Mengüç G (2015): Balistik Koruma Amaçlı Kullanılan Tekstil Materyalleri, Özellikleri ve Balistik Performans Testleri, Tekstil ve Mühendis, 22: 98, 84- 103.
  • 22. Oğlakcıoğlu N, Ertekin G, Marmaralı A, (2014): Yüksek Performanslı İpliklerden Üretilen Örme Kumaşların Mekanik Etkilere Karşı Dayanımlarının İncelenmesi, Tekstil ve Mühendis, 21: 95, 1-8.
  • 23. Zhou R, (2014) Effects of Crimp and Slip on Laminar and Woven Fabrics Subjected to Ballistic Impact, Doktora Tezi, Cornell Üniversitesi.
  • 24. Yavuz A K, Phoenix S L, Eken S, (2016): The Ballistic Impact Response of Flexible Composite Body Armor, American Society for Composites 31st Technical Conference and ASTM Committee D30 Meeting, September 19-22, Williamsburg, Virginia-USA.
  • 25. Eken S, Phoenix S L, Yavuz A K, (2016):.Computational Model for Woven Fabrics Subjected to Ballistic Impact by a Projectile, American Society for Composites 31st Technical Conference and ASTM Committee D30 Meeting, September 19-22, Williamsburg, Virginia-USA.
  • 26. Phoenix S L, Eken S, Yavuz A K, (2016): PC-Based Numerical Modeling of Ballistic Impact into Nonwoven Fibrous Targets, American Society for Composites 31st Technical Conference and ASTM Committee D30 Meeting, September 19-22, Williamsburg, Virginia-USA.
  • 27. Novotny W R, Cepus E, Shahkarami A, Vaziri R, Poursartip A, (2007): Numerical investigation of the ballistic efficiency of multiply fabric armours during the early stages of impact, Int. J. Impact Eng. 34: 2007 71–88.
  • 28. Lim J S, Lee B H, Lee C B, Han I-S, (2012): Effect of the Weaving Density of Aramid Fabrics on Their Resistance to Ballistic Impacts, Engineering, 4, 944-949.
  • 29. ASTM International. 2008. Standard test method for yarn crimp and yarn take-up in woven fabrics. ASTM D3883-04.
  • 30. Cunniff P M, (2001): Dimensional Analysis of Textile Body Armor, U.S. Army Soldier Systems Center, Natick MA 01760. Private communication.
  • 31. Sadegh A M, Cavallaro P V, (2012): Mechanics of Energy Absorbability in Plain-Woven Fabrics: An Analytical Approach, Journal of Engineered Fibers and Fabrics, 7:1, 10-25.
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası