REAKTİF RED 141 BOYASININ CLOISITE 20A KİLİ ÜZERİNE ADSORPSİYONUNUN İNCELENMESİ

Endüstrileşmeyle birlikte artan atık miktarı, çevresel sorunları ve kirlilikleri beraberinde getirmektedir. Çağımızın en önemli sorunlarından biri de, canlıların yaşaması için en temel gereksinimlerden olan suyun endüstriyel kullanım sonunda aşırı kirlenmesidir. Renkli ve zehirli bileşenler içeren tekstil atık sularının arıtılması oldukça zordur. Bu çalışmada tekstil atık sularının renginin uygun maliyetli ve etkili bir yöntem olarak bilinen adsorpsiyonla giderilmesi amaçlanmıştır. Çalışmada adsorbent olarak montmorillonit esaslı ticari bir organokil olan Cloisite 20A kullanılmış ve Reaktif Red 141 boyasının adsorpsiyonu incelenmiştir. Boyanın adsorpsiyon kinetiğini ve izoterm davranışını tespit etmek amacıyla kesikli yöntemle adsorpsiyon denemeleri gerçekleştirilmiştir. Denemelerden önce ve sonra alınan Cloisite 20A örnekleri FTIR ve SEM analizlerine tabi tutularak karakterize edilmiştir. Adsorpsiyon denemeleri sonucunda adsorpsiyonun dengeye ulaşma süresinin başlangıç derişiminden bağımsız, uzaklaştırılan boyarmadde yüzdesinin ise başlangıç derişimine bağlı olduğu tespit edilmiştir.

INVESTIGATION ON THE ADSORPTION OF REACTIVE RED 141 DYE ON CLOISITE 20A CLAY

The increasing amount of industrial wastes as a result of industrialization causes severe environmental problems and pollution. Pollution of clean water resources, which is one of the most fundamental requirements for living bodies, is one of the most important problems of our time. The treatment of textile waste water containing colored and toxic components is very difficult. In this work, the removal of colored substances from textile wastewater through the adsorption known as non-expensive and effective treatment method is targeted. For this aim, the adsorption behavior of Reactive Red 141 on a commercial organoclay, Cloisite 20A, was studied. Batch adsorption experiments were conducted to determine the adsorption kinetics and isotherm behavior of the dye. The used and unused adsorbent samples were subjected to FTIR and SEM analyses for characterization. The results of the experiments showed that the adsorption kinetics is independent of initial dye concentration whereas the percentage dye removal depends on the initial dye concentration.

___

  • 1. Rawat, D., Mishra, V.,Sharma, R.S., (2016), Detoxification of Azo Dyes in The Context of Environmental Processes, Chemosphere, 155, 591-605.
  • 2. Soutsas, K., Karayannis, V., Poulios, I., Riga A., Ntampegliotis, K., Spiliotis, X., Papapolymerou, G., (2010), Decolorization and Degradation of Reactive Azo Dyes via Heterogeneous Photocatalytic Processes, Desalination, 250, 345-350.
  • 3. Hassan, M. M., Carr, C. M., (2018), A Critical Review on Recent Advancements of The Removal of Reactive Dyes from Dyehouse Effluent by Ion-exchange Adsorbents, Chemosphere, 209, 201-219.
  • 4. Khatri, A., Peerzada, M. H., Mohsin, M., White, M.,(2015), A Review on Developments on Dyeing Cotton Fabrics with Reactive Dyes for Reducing Effluent Pollution, Journal of Cleaner Production, 87, 50-57.
  • 5. Papic, S., Vujevic, D., Koprivanac, N., Sinko, D., (2009), Decolourization and Mineralization of Commercial Reactive Dyes by Using Homogeneous and Heterogeneous Fenton and UV/Fenton Processes, Journal of Hazardous Materials, 164,1137-1145.
  • 6. Gottlieb, A., Shaw, C., Smith, A., Wheatley, A., Forsythe, S. (2003), The Toxicity of Textile Reactive Azo Dyes after Hydrolysis and Decolourisation, J. Biotechnol., 101, 49-56.
  • 7. Platzek, T., Lang, C., Grohmann, G., Gi U.S., Baltes W., (1999), Formation of a Carcinogenic Aromatic Amine from an Azo Dye by Human Skin Bacteria in Vitro, Hum. Exp. Toxicol., 18, 552-559.
  • 8. Copaciu, F., Opris, O., Coman, V., Ristoiu, D., Niinemets, Ü., Copolovici, L. (2013), Diffuse Water Pollution by Anthraquinone and Azo Dyes in Environment Importantly Alters Foliage Volatiles, Carotenoids and Physiology in Wheat (Triticum Aestivum), Water Air Soil Pollut., 224.
  • 9. Puvaneswari, N., Muthukrishnan, J., Gunasekaran, P. (2006), Toxicity Assessment and Microbial Degradation of Azo Dyes, Indian J. Exp. Biol., 44, 618-626.
  • 10. Umbuzeiro, G. A., Freeman, H. S., Warren, S. H., De Oliveira, D. P., Terao, Y., Watanabe, T., Claxton, L.D., (2005), The Contribution of Azo Dyes to the Mutagenic Activity of the Cristais River, Chemosphere, 60, 55-64.
  • 11. ETAD, (2008), The Restrictions on the Marketing and Use of Azo Colourants According to the European Legislation Following the Directive 2002/61/EC (19th Amendment of Council Directive 76/769/EEC).
  • 12. Rashed, M.N.,(2013), Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, Organic Pollutants – Monitoring, Risk and Treatment, 7, 167-194. 13. Adeyemo, A. A., Adeoye, I. O., Bello, O. S.,(2017), Adsorption of Dyes Using Different Types of Clay: a Review, Appl Water Sci, 7, 543-568.
  • 14. Grim, R. E., (1953), Clay Mineralogy, McGraw-Hill, https://www.accessscience.com/search?q=Montmorillonite&rows= 10&mode=AND&newSearch=Y, 15.09.2018.
  • 15. Öncü, E.M., (2006), Killer Üzerine Çok Halkalı Organik Bileşiklerin Adsorpsiyonu, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, Türkiye, 105 s.
  • 16. Elemen, S., Akçakoca Kumbasar, E. P., Yapar, S., (2012), Modeling the Adsorption of Textile Dye on Organoclay Using an Artificial Neural Network, Dyes and Pigments, 95, 102-111.
  • 17. Gürses, A., Doğar, C., Yalçın, M., Açıkyıldız, M., Bayrak, R., Karaca, S., (2006), The Adsorption Kinetics of the Cationic Dye,
  • Methylene Blue, Onto Clay, Journal of Hazardous Materials, 131, 217-228.
  • 18. Inthorn, D., Singhtho, S., Thiravetyan, P., Khan, E., (2004), Decolorization of Basic, Direct and Reactive Dyes by Pre-treated Narrow-leaved Cattail (Typha angustifolia Linn.), Bioresource Technol, 94, 299-306.
  • 19. Gisi, S. D., Lofrano, G., Grassi, M., Notarnicola, M., (2016), Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review, Sustainable Materials and Technologies, 9, 10-40.
  • 20. Güney, G., Yapar, S.,(2013), Removal of Cu+2 by Adsorption- Flocculation, Gazi University Journal of Science, 26, 579-590.
  • 21. Madejova, J., Komadel, P., (2001), Baseline Studies of the Clay Minerals Society Source Clays: Infrared Methods, Clays and Clay Minerals, 49, 410-432.
  • 22. (BYK, 2018). https://www.byk.com/en/additives/additives-by- name/cloisite-20-a.php, 17.03.2019.
  • 23. Wibulswas, R., (2004), Batch and Fixed Bed Sorption of Methylene Blue on Precursor and Qacs Modified Montmorillonite, Separation and Purification Technology, 39, 3–12.
  • 24. Yang, Y., Han, S., (2005), Nanoclay and Modified Nanoclay As Sorbents for Anionic, Cationic and Nonionic Dyes, Textile Research Journal, 75, 622-627.
  • 25. Wang, L. Wang, A., (2008), Adsorption Properties of Congo Red from Aqueous Solution onto Surfactant-Modified Montmorillonite, Journal of Hazardous Materials, 160, 173-180.
  • 26. Jamshidi, A., Rafiee, M., Jahangiri-Rad, M., (2014), Adsorption Behavior of Reactive Blue 29 Dye on Modified Nanoclay, Trends in Applied Sciences Research, 9, 303-311.
  • 27. Kaur, M., Datta, M., (2014), Adsorption Behaviour of Reactive Red 2 (RR2) Textile Dye onto Clays: Equilibrıum and Kinetic Studies, Eur. Chem. Bull., 3, 838-849.
  • 28. Vanaamudan, A., Pathan, N., Pamidimukkala, P., (2014), Adsorption of Reactive Blue 21 from Aqueous Solutions onto Clay, Activated Clay, and Modified Clay, Desalination and Water Treatment, 52, 1589-1599.