POLİPROPİLEN/TİTANYUM DİOKSİT NANOKOMPOZİT LİFLERİN ÜRETİMİ VE KARAKTERİZASYONU

Nanoteknoloji disiplinlerarası araştırma alanlarının en popülerlerinden biri haline gelmiştir. Nanoteknoloji uygulamalarının büyük çoğunluğunda polimer esaslı matrisler naotaneciklerin dağılma ortamı olarak kullanılmıştır. Bu çalışmada TiO2 katkılı PP nanokompozitler liflerin üretimi ve özellikleri incelenmiştir. Eriyikten çekim metodu kullanılarak kütlece % 0; 0,5; 1; 3; 5 oranlarında TiO2 nanotanecikler içeren nanokompozit lifler laboratuvar tipi çift vidalı mini ektruderde üretilmiştir (DSM Xplore). Üretilen liflerin ısıl özellikleri diferansiyel taramalı kalorimetri (DSC) ve termal gravimetrik analiz (TGA) yöntemleri ile belirlenirken, numunelerın kristalin yapıları X-ışını difraksiyon (XRD) testleri ile tespit edilmiştir. Taramalı elektron mikroskobu (SEM) ve mukavemet testleri ile liflerin morfolojik ve mekanik özellikleri saptanmıştır. XRD testlerinin sonuçlarına göre numunelerin yarı kristalin yapıda ve α formda kristaller içermektedir. Nanotaneciklerin eklenmesi ile PP matrislerin mekanik özelliklerinin artmıştır. Bu nanokompozit lifler sütür, sargı bezi, meş, bandaj, su ve gaz filitreleri gibi teknik ve tıbbi uygulamalarda kullanılabileceği düşünülmektedir.

POLYPROPYLENE/TITANIUM DIOXIDE NANOCOMPOSITE FIBER PRODUCTION AND CHARACTERIZATION

Nanotechnology has become one of the most popular research areas of all technical disciplines. In most of the nanotechnology applications, polymeric matrixes are used as the dispersion medium for the nanoparticles. In this study, TiO2 loaded PP nanocomposite fibers preparation and their properties are investigated. The melt spinning method is applied to prepare nanocomposite fibers, including 0, 0.5, 1, 3, 5 wt % filler content, using a laboratory-scale twin screw micro-compounder (DSM Xplore). While the thermal properties of the obtained fibers were determined by using differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA) methods, crystalline structure of the samples were determined via X-ray diffarctometer (XRD). Morphology and mechanical properties of fibers were assigned with scanning electron microscopy (SEM) and tensile tests. Depend on X-ray diffraction results; they have semi crystalline structure and α-phase crystal structure. With addition of nanoparticles, the tensile properties of the samples increased. In our opinion these nanocomposite fibers can be used in technical and medical applications, such as sutures, wound dressings, meshes, bandage, hospital clothes, water filters, gas filters, floor and wall covers

___

  • Ajayan, P.M., Schadler, L.S. ve Braun, P.V., (2003),
  • Nanocomposite Science and Technology, Wiley, Newyork, USA. Mather, R.R., (2005), Polyolefin Fibers, in Synthetic Fibres:
  • Nylon, Polyester, Acrylic, Polyolefin, 235-292, Ed. McIntyre J. E., Woodhead Publishing Ltd, Cambridge, England. Dayıoğlu, H. ve Canbaz Karakaş, H., (2007), Elyaf Bilgisi,
  • Teknik Fuarcılık, İstanbul. Dural Erem, A., Ozcan, G.,& Skrifvars, M., (2013), In vitro assessment of antimicrobial polypropylene/zinc oxide nanocomposite fibers, Textile Research Journal, 83 (20), 2152-2163.
  • Erdem, N., Erdoğan Ü. H., Akşit, A., (2009), Nano-kompozit
  • Polipropilen Filamentlerin Üretimi ve Özellikleri, Tekstil ve Mühendis, 15, 69, 14-24. Kathirvelu, S., D’Souza, L. ve Dhurai, B., (2008),
  • Nanotechnology Applications in Textile, Indian Journal of Science and Technology, 1, 5, 1-10. Temirel, A. ve Palamutçu, S., (2011), Fonksiyonel Tekstiller
  • III: Tekstil Yüzeylerinde Fotokatalitik Etki ve Kendi Kendini Temizleme, Tekstil Teknolojileri Elektronik Dergisi, 5 (2),35-50. Dural Erem, A., Erem H.H., Ozcan, G., ve Skrifvars, M., (2014), Anastase titanium dioxide loaded polylacyide membranous films: preparation, characterization, and antibacterial activity assessment, The Journal of The Textile Institute, 106,6, 571-576.
  • Reddy, K.M., Manorama, S.V. ve Reddy, A.R., (2002),
  • Bandgap Studies on Anastase Titanium Dioxide Nanoparticles, Material Chemistry and Physics, 78, 239- 2
  • Thirtha, V., Lehman, R., Nosker, T., (2005), Glass Transition
  • Phenomena in Melt-Processed Polystyrene /Polypropylene Blends, Polymer Engineering and Science 45, 9, 1187-1193.
  • ASTM D7028-07e1, (2007), Standard Test Method for
  • Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA), American Society for Testing and Materials (ASTM), USA. ASTM D3822, (2007), Standard Test Method for Tensile
  • Properties of Single Textile Fibers, American Society for Testing and Materials (ASTM), USA. Altan, M., Yıldırım, H., Uysal, A., (2011), Tensile
  • Properties of Polypropylene / MetalOxide Nanocomposite, The Online Journal of Science and Technology, 1, 1, 25-30. Saujanya, C., Radhakrishnan, S., (2001), Structure
  • Development and Crystallization Behavior of PP/ Nanoparticulate Composite, Polymer, 42, 16, 6723-6731.
  • Xia, H., Wang, Q., (2002), Ultrasonic Irradiation: A Novel Approachg
  • /Nanocrystalline Titanium Oxide Comosite, Chemistry of Materials, 14, 2158-2165. Conductive Polyaniline
  • Esthappan, S.K., Kuttappan, S.K. ve Joseph, R., (2012),
  • Effect of Titanium Dioxide on the Thermal Ageing of Polypropylene, Polymer Degradation and Stability, 97, 651- 6