Theoretical study of the effects of spinning triangle horizontal offset on yarn torque

İplik torku, eğirme üçgenindeki iplik geriliminin aktarılması esasına göre belirlenen, önemli iplik kalite indekslerinden birisidir. Bu nedenle, Bnenett ve Postlea göre, iplik içerisindeki lif gerilimi, iplik torkunun büyüklüğünü yöneten en etkili faktördür. Bu arada, lif gerilimi esas olarak eğirme üçgeninin geometrisi tarafından, özellikle de simetrik eksene göre büküm noktasındaki yatay sapma tarafından belirlenir. Bu nedenle, çalışma kapsamında ring eğirme üçgenin yatay sapmasının iplik torku üzerindeki etkileri incelenmiştir. Öncelikle, lif gerilimine bağlı olarak, iplik içinde kalan torkun teorik modeli verilmiştir. İplik torku ve eğirme üçgeni yatay sapması arasındaki ilişkiler teorik olarak analiz edilmiştir. İkinci olarak, önerilen yöntemin uygulaması olarak, yatay sapmayı sürekli olarak değiştiren bir offset cihazı ile modifiye edilmiş ring iplik sistemi kullanılmıştır ve iplik torku, sürekli değişen yatay sapma ile ilişkilendirilerek sayısal olarak simüle edilmiştir. Simetrik eğirme üçgeninde ( d = 0 ), iplik daha yüksek lif çekme ve sıkışma gerilimi gösterirken, yatay sapmanın artışı ile iplikte çekme ve sıkışma geriliminde çok daha homojen dağılım gözlenmiştir. Bu nedenle, simetrik eğirme üçgeninde, iplik en yüksek torku göstermektedir ve iplik torku, yatay sapmadaki artış ile paralel olarak azalmaktadır.

Eğirme üçgeni yatay sapmasının iplik torkuna etkileri üzerine teorik bir çalışma

Yarn torque is one of the important indexes of yarn quality, which is determined on the basis of the translation of fiber tension at the spinning triangle. Therefore, the fiber tension within a yarn was proposed to be the most influential factor governing the magnitude of yarn torque by Bnenett and Postle. Meanwhile, fiber tension is determined by the geometry of spinning triangle mainly, especially the horizontal offset of the twisting point to the symmetric axis of nip line. Therefore, the effects of horizontal offset of the ring spinning triangle on yarn torque was investigated in this paper. Firstly, a theoretical model of the residual torque within a yarn due to the fiber tension was given. The relationships between the yarn torque and the spinning triangle horizontal offset were analyzed theoretically. Secondly, as an application of the proposed method, a modified ring spinning system with a pair of offset device which can change the horizontal offset continuously were used and the yarn torque was simulated numerically with the horizontal offset changing continuously correspondingly. It is shown that in a symmetric spinning triangle (d=0), the yarn shows a higher radial bias of the fiber tensile and compressive stress, while a more and more uniform distribution of tensile and compressive stress within a yarn with the increasing of the horizontal offset. Therefore, in a symmetric spinning triangle, the yarn shows the highest torque, and the yarn torque decrease with the increasing of the horizontal offset in theory correspondingly.

___

  • 1. Hua, T., Tao X.M., Kwok C., Stephen P. and Xu B.G., 2010, “Effects of Geometry of Ring Spinning Triangle on Yarn Torque: Part II: Distribution of Fiber Tension within a Yarn and Its Effects on Yarn Residual Torque”, Textile Research Journal, Vol80(2), pp: 116-123.
  • 2. Tao X.M., 1996, “Mechanical properties of a Migrating fiber”, Textile Research Journal, Vol66(12), pp:754-762.
  • 3. Bennett J. M., and Postle R., 1979, “A Study of Yarn Torque and Its Dependence on the Distribution of Fiber Tension in the Yarn, Part I: Theoretical Analysis, Part II: Experimental”, Journal of the Textile Institute, Vol70(4), pp:121-141.
  • 4. Xu B.G and Tao X.M., 2008, “Techniques for Torque Modification of Singles Ring Spun Yarns”, Textile Research Journal, Vol78(10), pp:869-879.
  • 5. Hua T., Tao X.M., Cheng K. P. S. and Xu B.G., 2007, “Effects of Geometry of Ring Spinning Triangle on Yarn Torque Part I: Analysis of Fiber Tension Distribution”, Textile Research Journal, Vol77(11), pp:853-863.
  • 6. Feng J., Xu B.G. and Tao X.M., 2010, “Theoretical Study of Spinning Triangle with Its Application in a Modified Ring Spinning System”, Textile Research Journal, Vol80(14), pp: 1456-1464.
  • 7. Wang X.G., 1998, “Recent research on yarn hairiness testing and reduction: Part-Reduction of Yarn Hairiness”, Research Journal of Textile and Apparel, Vol3(1), pp:1-8.
  • 8. An X.L. and Yu C.W., 2010, “Dynamic model of sirospun process. Part I: theoretical dynamic model”, Journal of the Textile Institute, Vol101(9), pp:805-811.
  • 9. Cheng L.D., Fu P.H. and Yu X.Y., 2004, “Relationship between hairiness and the twisting principles of solospun and ring spun yarns”, Textile Research Journal, Vol74(9), pp:763- 766.
  • 10. Momir N., Zoran S., Franc L. and Andrej S., 2003, “Compact Spinning for Improved Quality of Ring-Spun Yarns”, Fibers & Textiles in Eastern Europe, Vol11(4), pp:30-35.
  • 11. Shaikhzadeh N. S., 1996, “An Analysis of the Twist Triangle in Ring Spinning”, PhD Thesis, University of New South Wales, Australia.
  • 12. Klein W., 1993, “Spinning Geometry and its Significance”, International Textile Bulletin: Yarn Fabric Forming, Vol139, pp:22-26.
  • 13. Thilagavathi G., Udayakumar D., Sasikala L., 2009, “Yarn hairiness controlled by various left diagonal yarn path offsets by modified bottom roller flute blocks in ring spinning”, Indian Journal of Fiber and Textile Research, Vol34, pp:328-332.
  • 14. Schwarz E. R., 1951, “Certain Aspects of Yarn Structure”, Textile Research Journal, Vol21(3), pp:125–136.