The effects of weave and conductive yarn density on the electromagnetic shielding effectiveness of cellular woven fabrics

Bu çalışmada, paslanmaz çelikten özlü iplikler ile farklı atkı sıklıklarında dokunan iletken dimi ve hücreli örgülü kumaşların elektromanyetik kalkanlama etkinliği free space measurement tekniği ile yatay anten polarizasyonunda ölçülmüştür. Atkı iplikleri anten polarizasyonuna paralel olacak şekilde yerleştirilen dokuma kumaş numunelerinin endüstriyel, bilimsel ve tıbbi band olan yüksek frekans bandında iyi elektromanyetik kalkanlama performansı gösterdiği gözlenmiştir. Ayrıca çelik özlü atkı ipliklerin sıklığı artırıldığında aynı konumda yerleştirilen kumaş numunelerinin elektromanyetik kalkanlama etkinliğinin arttığı gözlenmiştir. Atkı iplikleri anten polarizasyonuna dik olacak biçimde yerleştirilen kumaş numunelerinin elektromanyetik kalkanlama etkinliği ise efektif yüzey iletkenliğinin artmasına bağlı olarak artış göstermiştir

Örgünün ve iletken atkı sıklığının hücreli örgülü kumaşların eletromanyetik kalkanlama etkinliğine etkisi

In this study, the electromagnetic shielding effectiveness of twill and some cellular woven conductive fabrics woven with stainless steel core yarns at different weft densities has been measured by free space measurement technique at horizontal polarization of the antenna. It is observed that woven fabric samples, which have been positioned so that the weft yarns have been parallel to the antenna polarization, have shown good electromagnetic shielding performances in high frequency band, namely industrial, scientific and medical band. And also, when the steel core weft yarn density has been increased, the decrease in the electromagnetic shielding effectiveness of fabric samples, which have been positioned the same way, is observed. Conversely, the electromagnetic shielding effectiveness of fabric samples, which have been positioned so that the weft yarns have been vertical to the antenna polarization, has increased in agreement with the effective surface conductivity.

___

  • 1. King, R. W. P., 2000, “Electrical Currents and Fields Induced In Cells in the Human Brain by Radiation from Hand-Held Cellular Telephones”, Journal of Applied Physics, 87(2), p.893-900.
  • 2. Gandhi, O. P., 2002, “Electromagnetic Fields: Human Safety Issues”, Annual Review of Biomedical Engineering, No.4, p.211-234.
  • 3. World Health Organization Homepage on the Internet, World Health Organization, Cited 26 March 2012, Available from: http//www.who.int/peh-emf/en/
  • 4. Perumalraj, R. et al., 2009, “Electromagnetic Shielding Effectiveness of Copper Core-Woven Fabrics”, The Journal of the Textile Institute, 100(6), p.512- 524.
  • 5. Roh, J.S. et al., 2008, “Electromagnetic Shielding Effectiveness of Multifunctional Metal Composite Fabrics”, Textile Research Journal, 78(9), p.825-835.
  • 6. Su, C.I. and Chern, J.T., 2004, “Effect of Stainless Steel-Containing Fabrics on Electromagnetic Shielding Effectiveness”, Textile Research Journal, 74(1), p.51-54.
  • 7. Cheng, K.B. et al., 2006, “Electromagnetic Shielding Effectiveness of the Twill Copper Woven Fabrics”, Journal of Reinforced Plastics and Composites, 25(7), p.699-709.
  • 8. Chen, H.C. et al., 2007, “Fabrication of Conductive Woven Fabric and Analysis of Electromagnetic Shielding via Measurement and Empirical Equation”, Journal of Materials Processing Technology, 184, p.124-130.
  • 9. Duran, D. et al., 2009, “Electromagnetic Shielding Effectiveness of Woven Fabrics Produced with Conductive Core Yarns”, AUTEX World Textile Conference, May 26-28, İzmir, Turkey, p.779-786.
  • 10. Varnaitė, S. et al., 2008, “The Features of Electric Charge Decay in the Polyester Fabric Containing Metal Fibres”, Materials Science (Medžiagotyra), 14(2), p.157-161.
  • 11. Sandrolini, L. and Reggiani, U., 2008, “Investigation on the Shielding Effectiveness Properties of Electrically Conductive Textiles”, Asia Pacific Microwave Conference, December16-19, Hong Kong, China.
  • 12. Palamutcu, S. et al., 2010, “Electrically Conductive Textile Surfaces and Their Electromagnetic Shielding Efficiency Measurement”, Tekstil ve Konfeksiyon, 20(3), p.199-207.
  • 13. Örtlek, H.G., et al., 2012, “Investigation of Electromagnetic Shielding and Comfort Properties of Single Jersey Fabrics Knitted From Hybrid Yarns Containing Metal Wire”, Tekstil ve Konfeksiyon, 22(2), p.90-101.
  • 14 Joyner, K.H. et al., 1989, “An Evaluation of A Radiofrequency Protective Suit and Electrically Conductive Fabrics”, IEEE Transactions on Electromagnetic Compatibility, 31(2), p.129-137.
  • 15. Więckowski, T.W. and Janukiewicz, J.M., 2006, “Methods for Evaluating the Shielding Effectiveness of Textiles”, Fibres & Textiles in Eastern Europe, 14(5), p.18-22.
  • 16. Başer, G., 2004, Dokuma Tekniği ve Sanatı, Cilt 1, Punto Publishing.
  • 17. David, V. et al., 2007, “On the Characterization of Electromagnetic Shielding Effectiveness of Materials”, 15th IMEKO TC4 Symposium on Novelties in Electrical Measurements and Instrumentation, September 19-21, Iasi, Romania, p.73-78.
  • 18. Çeken et al., 2011, “The Electromagnetic Shielding Properties of Copper and Stainless Steel Knitted Fabrics”, Tekstil, 60(7), p.321-328.
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi
Sayıdaki Diğer Makaleler

SeaCell® KUMAŞLARIN TERMAL ÖZELLİKLERİ VE GÜÇ TUTUŞURLUK ÖZELLİKLERİNİN İNCELENMESİ

B. Cenkkut GÜLTEKİN, Mehmet AKALIN, S. Müge YÜKSELOĞLU

Thermogravimetric, microscopic and mechanical analyses of pbt and pet yarns

Buket ARIK, Aslı DEMİR, Ebru BOZACI, Esen ÖZDOĞAN

TEDARİK ZİNCİRİ OPTİMİZASYONU VE İPLİK İŞLETMESİNDE AHP İLE DAĞITIM AĞI UYGULAMASI

İrfan ERTUĞRUL, Beyza ÖZBAY

Assessment of antimicrobial activity of natural leathers treated wıth pseudevernia furfuracea (L.) Zopf extracts

Ahmet ASLAN, Binnur YAPICI MERİÇLİ, Sadi Turgut BİLGİ, Ali Nail YAPICI, Mehmet Fatih TÜRKAN

Investigation of the physical properties of meltblown nonwovens for air filtration

Deniz DURAN, Gülşah OYMAK, Kevser KILIÇ, Ezgi ÖNCÜ, Kerim DURAN, Mehmet KARA

ÖRGÜNÜN VE İLETKEN ATKI SIKLIĞININ HÜCRELİ ÖRGÜLÜ KUMAŞLARIN ELETROMANYETİK KALKANLAMA ETKİNLİĞİNE ETKİSİ

Hakan ÖZDEMİR, Ahmet ÖZKURT

Evaluation of degreasing process with plant derived biosurfactant for leather making: An ecological approach

Eylem KILIÇ

The study of flame retardancy and thermal properties of seacell® fabrics

B. Cenkkut GÜLTEKİN, S. Müge YÜKSELOĞLU, Mehmet AKALIN

Investigation on determining the coefficient of thermal conductivity to textile materials recoverable, used for thermal protection of hot pipelines

Dorin AVRAM, Gheorghe HORGA, Mihaela HORGA, Ioan HOSSU

TEKSTİL BOYA TERBİYE İŞLETMELERİNDE ZAMAN SERİLERİ MODELİ İLE TALEP TAHMİNİ

Emel Ceyhun SABIR, Esma BATUK