STUDY OF MECHANICAL PROPERTIES FOR FILTER BAG MATERIALS UNDER THERMAL SHOCK

Bu çalışmada, ön gerilimli yükleme ile ısıl şok altında filtre torbası malzemelerinin mekanik özelliklerinin ölçümü için yeni bir tesis ve yöntem sunmaktayız. En güncel test cihazlarının aksine, yeni tesis ve yöntem sadece sabit periyodik ısıl şok sunabilmekte kalmadığı gibi, aynı zamanda yüksek sıcaklık altında, gerilme kuvvetini de test edebilmektedir. Gerilme yüklemeli ısıl şoktan sonra, gerçek mekanik özellikleri ortaya çıkarır. Isıl şok'un filitre torbası malzemelerinin mekanik özelliklerinin bozulmasını hızlandırdıgını keşfeder. Periyodik ısıl şokun filtre torbası malzemelerinin mikroyapısına etkisi, taramalı elektron mikroskopu (SEM), X-ışını kırınımı (XRD) ve dinamik mekanik analiz (DMA) ile araştırılmıştır. Filitre torbası malzemelerinin kristalinitesinin (kristalleşme derecelerinin), artan ısıl şok periyodları ile arttığı bulunmuştur. Isıl şokun, filtre torbası malzemelerinin kristalinitesi (kristalleşme derecesi) ve mikro yapısı üzerinde etkisi olduğu sonucuna varılmıştır.

ISIL ŞOK ALTINDA, FİLİTRE TORBASI MALZEME/KUMAŞLARININ MEKANİK ÖZELLİKLERİNİN İNCELENMESİ

In this work, we present a novel facility and method for the measurement of mechanical properties of filter bag materials under thermal shock with pre-tensile loading. In contrast to most current test equipments, the new facility is not only able to provide constant cyclic thermal shock but also test tensile strength under high temperature at the same time. It reflects the real mechanical properties under high temperature after thermal shock with tensile loading. It discovers that thermal shock accelerates degradation of the mechanical properties of the filter bag materials. The effect of cyclical thermal shock on the filter bag materials microstructure is investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and dynamic mechanical analysis (DMA). It is found that the crystallinity of filter bag materials increases with increasing of thermal shock cycles. It is concluded that the thermal shock effects on crystallinity and microstructure of filter bag materials.

___

  • 1. Tanthapanichakoon W., Furuuchi M., Nitta K., Hata M., Endoh S., Otani Y., 2006, Degradation of semi-crystalline PPS bag-filter materials by NO and O2 at high temperature. Polymer Degradation and Stability, 91(8): p. 1637-1644.
  • 2. Limin B., Liu D.L., 2013, Damage characteristics of dry sand erosion of fiber in a hot environment. Journal of Textile Engineering, 59(1): p. 1-6.
  • 3. Kishima T., Bao L., Nakazawa K., 2003, Experimental study about particle wear of the bag filters. Soc Powder Technol JAPAN Preprints, p. 55-57.
  • 4. Limin B., Liu D.L., Danna Q., Kemmochi K., Yamanaka A., 2012, Measurement and evaluation methods for damage of fibers from dry sand erosion in a hot environment. Textile Research Journal, 82(15): p. 1612-1617.
  • 5. Mangat M.M., Hes L., Bajzík V., 2015, Thermal resistance models of selected fabrics in wet state and their experimental verification. Textile Research Journal, 85(2): p. 200-210.
  • 6. Pham M., Clark C., McKenna J., 2012, The evolution and impact of testing baghouse filter performance. Journal of the Air & Waste Management Association, 62(8): p. 916-923.
  • 7. ÜNAL A. G. P. G., MYO E. Ü. E. A., TAŞKIN C., 2007, The effect of weave and densities on tensile strength of 100% polyester fabrics. TEKSTIL VE KONFEKSIYON 17(2): p.115-118.
  • 8. Haji A., Rahbar S.R., 2012, Structure evolution and mechanical behavior of poly (ethylene terephthalate) fibers drawn at different number of drawing stages. Chemical Industry and Chemical Engineering Quarterly, 18(2): p. 233-243.
  • 9. Yoo H.J., Kim K.H., Yadav S.K., Cho J.W., 2012, Effects of carbon nanotube functionalization and annealing on crystallization and mechanical properties of melt-spun carbon nanotubes/poly(ethylene terephthalate) fibers. Composites Science and Technology, 72(15): p. 1834-1840.
  • 10. Shaw J.P., Gilbert M., 1991, Characterization of commercial polybutylenes. part II. Crystallinity and tensile properties. Journal of Macromolecular Science, Part B, 30(4): p. 301-317.
  • 11. Aoki Y., Amari T., Nishimura K., Arashiro Y., 1999, Dynamic mechanical properties of poly (ethylene terephthalate) /poly(ethylene 2,6-naphthalate) blends. Macromolecules, 32(6): p. 1923-1929.
  • 12. Rezaei F., Yunus R., Ibrahim N.A., 2009, Effect of fiber length on thermal mechanical properties of short carbon fiber reinforced polypropylene composites. Materials & Design, 30(2): p. 260-263.