FARKLI SOLVENT SİSTEMLERİ KULLANILARAK POLİKAPROLAKTON/KİTOSAN NANO/MİKRO LİFLERİN ÜRETİMİ VE ANTİBAKTERİYEL ÖZELLİKLERİNİN İNCELENMESİ

Farklı oranlarda karışımı yapılmış kitosan/polikaprolakton (CHI/PCL) nano/mikro lifler elektroçekim metoduyla üretilmiştir. Elektroçekim çözeltileri aseton ve formik asit (FA) olmak üzere iki farklı solvent kullanılarak hazırlanmıştır. Solvent etkisinin üretilen nano/mikro liflerin morfolojileri, kimyasal ve termal özellikleri ve antibakteriyel aktiviteleri üzerindeki etkileri SEM, FTIR, DSC ve ASTM 2149 01 standardına göre antibakteriyellik analizleri yapılarak ölçülmüştür. Elde edilen sonuçlara göre, solvent olarak aseton kullanıldığında kitosanın partikül olarak PCL lifler tarafından kapsüle edildiği ve liflerin antibakteriyellik özelliklerini düşürdüğü gözlemlenmiştir. Diğer taraftan, solvent olarak formik asit kullanıldığında kitosan ve polikaprolaktonun elektroçekim çözeltisi içerisinde tamamen çözündüğü, kapsülasyonun olmadığı, üretilen ağsı yapı içerisinde hem PCL hemde CHI fibriller yapıda bulunduğu ve elde edilen yapıların daha iyi antibakteriyel özelliklerde oldukları tespit edilmiştir.

PREPERATION AND ANTIBACTERIAL INVESTIGATION OF POLYCAPROLACTONE/CHITOSAN NANO/MICRO FIBERS BY USING DIFFERENT SOLVENT SYSTEMS

Chitosan (CHI) blended polycaprolactone (PCL) nano/micro fibers were prepared with different CHI content via electrospinning procedure. Two different solvents, acetone and formic acid (FA) were used to dissolve and blend the polymers before electrospinning process. Effect of the solvent on the electrospinability of the blend, final nano/micro fiber morphologies, chemical and thermal properties and antibacterial activities were investigated with SEM, FTIR, DSC, and ASTM 2149 01 Standard Dynamic Contact Conditions. The results revealed that chitosan particles were encapsulated in the as-spun PCL fibers with using acetone as the solvent resulted in reduced antibacterial activities Contrarily, when FA is used as the solvent, CHI and PCL were dissolved and blended very well, and enhanced antibacterial activities were obtained from as-spun PCL/CHI nano/micro fibers.

___

  • O'Neill J., “Tackling Drug-Resistant Infections Globally: Final Report and Recommendations”. https://amr-review.org/sites/default/files/160525_Final %20paper_with%20cover.pdf (accessed July 30, 2017)
  • 2. Siedenbiedel F., Tiller J-C., 2012, “Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles”, Polymers, 4(1), pp:46-71.
  • 3. Simoncic B., Tomsic B., 2010, “Structures of Novel Antimicrobial Agents for Textile a Review” Textile Research Journal, 80 (16), pp:1721-1737.
  • 4. Hurt A. P., Kotha A. K., Trivedi V., Coleman, N. J. 2015. “Bioactivity, biocompatibility and antimicrobial properties of a chitosan-mineral composite for periodontal tissue regeneration.” Polimeros, 25 (3), pp:311-316.
  • 5. Croisier F., Atanasova G., Poumay Y. and Jerome C. 2014, “Polysaccharide-coated PCL nano/micro fibers for wound dressing applications”, Advanced Healthcare Materials, 3(12), pp:2032-2039.
  • 6. Kim G. H. 2008, “Electrospun PCL nano/micro fibers with anisotropic mechanical properties as a biomedical scaffold”, Biomedical materials, 3(2), pp: 25010.
  • 7. Ghasemi-Mobarakeh L., Prabhakaran M. P., Morshed M., Nasr-Esfahani M. H. and Ramakrishna, S. 2010, “Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering”, Materials Science and Engineering: C, 30(8), pp: 1129-1136.
  • 8. Zamani M., Morshed M., Varshosaz J. and Jannesari M. 2010, “Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nano/micro fibers for periodontal diseases”, European Journal of Pharmaceutics and Biopharmaceutics, 75(2), pp: 179-185.
  • 9. Nottelet B., Pektok E., Mandracchia D., Tille J.-C., Walpoth B., Gurny R. and Moeller M. 2009, “Factorial design optimization and in vivo feasibility of poly(ε-caprolactone)-micro- and nanofiber-based small diameter vascular grafts”, Journal of Biomedical Materials Research Part A, 89A(4), pp: 865-875.
  • 10. Cooper A., Oldinski R., Ma H., Bryers J. D. and Zhang M. 2013, “Chitosan-based nanofibrous membranes for antibacterial filter applications”, Carbohydrate Polymers, 92(1), pp: 254-259.
  • 11. Van der Schueren L., Steyaert I., De Schoenmaker B. and De Clerck, K. 2012, “Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system”, Carbohydrate Polymers, 88(4), pp: 1221-1226.
  • 12. Sarasam A. R., Krishnaswamy R. K. and Madihally S. V. 2006, “Blending Chitosan with Polycaprolactone: Effects on Physicochemical and Antibacterial Properties”, Biomacromolecules, 7(4), pp: 1131-1138.
  • 13. Yu H., Wang W., Chen X., Deng C. and Jing X. 2006, “Synthesis and characterization of the biodegradable polycaprolactone-graft-chitosan amphiphilic copolymers”, Biopolymers, 83(3), pp: 233-242.
  • 14. Semnani D., Naghashzargar E., Hadjianfar M., Manshadi F. D., Mohammadi S, Karbasi S., Effaty F., 2017, “Evaluation of PCL/chitosan electrospun nano/micro fibers for liver tissue engineering”, International Journal of Polymeric Materials and Polymeric Biomaterials, 66(3),pp:149-157.
  • 15. Aykut, Y., Pourdeyhimi, B., Khan, S. A., 2013, “Effects of surfactants on the microstructures of electrospun polyacrylonitrile nano/micro fibers and their carbonized analogs”, J. Appl. Polym. Sci., 130 (5), pp:3726-3735.
  • 16. Aykut, Y., Porsons, G.N., Pourdeyhimi, B., Khan, S. A., 2013, “Synthesis of Mixed Ceramic Mg x Zn1–x O Nano/micro fibers via Mg2+ Doping Using Sol– Gel Electrospinning”, Langmuir, 29(12), pp:4159-4166.
  • 17. Xue, J., Niu, Y., Shi, R., Chen, D., Zhang, L., Lvov, Y., 2015, Electrospun Microfiber Membranes Embedded with Drug-Loaded Clay Nanotubes for Sustained Antibacterial Protection, ACS Nano, 9(2), pp:1600–1612.
  • 18. Abedalwafa M., Wang F., Wang L. and Li C. 2013, “Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review”, Rev. Adv. Mater. Sci, 34(1), pp:123-140.
  • 19. Orhan M., Kut D., and Gunesoglu C., 2009, “Improving the Antibacterial Activity of Cotton Fabrics Finished with Triclosan by the Use of 1,2,3,4- Butanetetracarboxylic Acid and Citric Acid”, Journal of Applied Polymer Science, 111(3), pp:1344-1352.
  • 20. Orhan M., Kut D., and Gunesoglu C.,2012, “Improving the Antibacterial Property of Polyethylene Terephthalate by Cold Plasma Treatment”, Plasma Chemistry and Plasma Processing, 32(2), pp:293-304.
  • 21. Schueren V. L. D., Steyaert I, Schoenmaker B. D., Clerck, K. D., 2012, “Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system”, Carbohydr Polym., 88(4), 1221 -1226.
  • 22. Joshi, M. K., Tiwari, A. P., Pant, H. R., Shrestha, B. K., Kim, H. J., Park, C. H., Kim, C. S., 2015, “In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nano/micro fibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization”, ACS Appl. Mater. Interfaces, 7(35), pp:19672−19683.
  • 23. Ali, S., Khatri, Z., Oh, K. W., Kim, I. S., Kim, S. H. 2014, “Preparation and Characterization of Hybrid Polycaprolactone/cellulose Ultrafine Fibers via Electrospinning”, Macromol. Res., 22 (5), pp:562–568.
  • 24. Wan Y., Lu X., Dalai S. and Zhang, J. 2009, “Thermophysical properties of polycaprolactone/chitosan blend membranes”, Thermochimica Acta, 487(1-2), pp: 33-38.
  • 25. No H. K., Park N. Y., Lee S. H. and Meyers S. P., 2002, “Antibacterial activity of chitosans and chitosan oligomers with different molecular weights”, International Journal of Food Microbiology, 74(1-2), pp:65-72.
  • 26. Chung Y. C., Wang H. L., Chen Y. M. and Li S. L., 2003, “Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens”, Bioresource Technology, 88(3), pp:179-184.
  • 27. Choi B. K., Kim K. Y., Yoo Y. J., Oh S. J., Choi J. H. and Kim C. Y., 2001, “In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans”, International Journal of Antimicrobial Agents, 18(6), pp:553-557.
  • 28. Fujita M., Kinoshita M., Ishihara M., Kanatani Y., Morimoto Y., Simizu M., Ishizuka T., Saito Y., Yura H. and Matsui T., 2004, “Inhibition of vascular prosthetic graft infection using a photocrosslinkable chitosan hydrogel”, Journal of Surgical Research, 121(1), pp:135-140.