Developing an algorithm for defect detection of denim fabric: Gabor filter method

Bu çalışmada, kumaş hata denetiminin otomatik olarak gerçekleştirilebilmesi için Gabor filtresi ve çift eşikleme metotları kullanarak bir algoritma geliştirilmektedir. Gabor filtresi ile yapılan konvolosyon işlemi sonucunda kumaş görüntüsündeki hatalı alan vurgulanırken hatasız doku sönükleştirilmektedir. Görüntü daha sonra çift eşikleme metodu kullanılarak ikili (binary) forma dönüştürülmektedir. Genişletme ve aşındırma morfolojik işlemleri kullanılarak gürültüler yok edilmekte ve hatalı alan belirgin bir şekilde ortaya çıkarılmaktadır. Hatanın sınırları işaretlenmektedir. Çözgü kaçığı, atkı kaçığı, delik, lekeli iplik ve düğüm gibi beş hata tipinden oluşan bir kumaş hata görüntüsü veritabanı oluşturulmuştur. Veritabanı her bir hata tipi ve hatasız kumaş numunesi için 30 farklı görüntü içermektedir. Böylece, algoritma 180 kumaş görüntüsüne uygulanmıştır, tüm hatalı alanlar yüksek başarı oranları ile tespit edilmiştir. Sonuçta kullanılan, algoritmanın başarısı istatistiksel olarak değerlendirilmiştir.

Denim kumaşın hata denetimi için bir algoritma geliştirilmesi: gabor filtre yöntemi

In this study, an algorithm is developed by using Gabor filtering and double thresholding methods for fabric defect detection automatically. The defective area of the fabric image is accentuated, and the defect-free texture is attenuated as result of convolution operation with the Gabor filter. The image is then converted into binary form for by using double thresholding method. The noises are removed and the defective area is determined clearly by using dilation and erosion morphological operations. The boundary of the defect is labeled. A fabric defect image database consists of five defect types; warp lacking, weft lacking, hole, soiled yarn and knot is formed. The database includes 30 different images for each type of defect and defect-free fabric samples. Thus, the algorithm is applied over 180 fabric images. All defective areas are detected with high success rates. The performance of the algorithm is given statistically.

___

  • 1. Karayiannis Y. A., Stojanovic R., Mitropoulos P., 1999, “Defect detection and classification on web textile fabric using multiresolution decomposition and neural networks”, The 6th IEEE International Conference on Electronics, Circuits and Systems, Pafos, 2, pp:765-768.
  • 2. Zhi Y. X., Pang G.K.H. and Yung H. C. N., 2001, “Fabric defect detection using adaptive wavelet”, IEEE International Conference on Acoustics, Speech, and Signal Processing, pp:3697-3700.
  • 3. Serdaroglu A., Ertuzun A. and Ercil A., 2005, “Defect detection in textile fabric images using wavelet transforms and independent component analysis”, Pattern Recognition and Image Analysis, 16, 1, pp: 61-64.
  • 4. Lıu G. S. and Qu P. G., 2008, “Inspection of fabric defects based on wavelet analysis and BP neural network”, Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, pp: 232-236.
  • 5. Mak K. L. and Peng P., 2006, “Detecting defects in textile fabrics with optimal gabor filters”, World Academy of Science, Engineering and Technology, 13, pp: 75-80.
  • 6. Mak K.L. and Peng P., 2008, “An automated inspection system for textile fabrics based on Gabor filters”, Robotics and Computer-Integrated Manufacturing, 24, pp:359–369.
  • 7. Han R. and Zhang L., 2009, “Fabric defect detection method based on Gabor filter mask”, Global Congress on Intelligent Systems, Xiamen, China, pp:184-188.
  • 8. Huang C. C. and Chen C. I., 2001, “Neural-fuzzy classification for fabric defects”, Textile Research Journal. 71(3), pp:220-224.
  • 9. Kumar A., 2003, “Neural network based detection of local textile defects”, Pattern Recognition, 36, pp:1645-1659.
  • 10. Jianli L. and Baoqi Z., 2007, “Identification of fabric defects based on discrete wavelet transform and back-propagation neural network”, Journal of the Textile Institute, 98:4, pp:355-362.
  • 11. Kuo C. J. and Lee C. J., 2003, “A back-propagation neural network for recognizing fabric defects”, Textile Research Journal, 73(2), pp:147-151.
  • 12. Saeidi R. G., Latifi M., Najar S. S. and Saeidi A. G., 2005, “Computer vision-aided fabric inspection system for on-circular knitting machine”, Textile Research Journal. 75(6), pp:492–497.
  • 13. Torun T. K. and Marmaralı A., 2011, “Online fault detection system for circular knitting machines”, Tekstil ve Konfeksiyon, 21(2), pp:164-170.
  • 14. İTKİB, Genel Sekreterliği AR&GE ve Mevzuat Şubesi. 2011. Hazırgiyim ve Konfeksiyon Sektörü 2011 Ocak-Haziran İhracat Performans Değerlendirmesi. http://www.itkib.org.tr/ihracat/DisTicaretBilgileri/raporlar/dosyalar/2011/konfeksiyon_performans_raporu_haziran_2011.pdf. 17.11.2012.
  • 15. Kumar A., 2008, “Computer-vision-based fabric defect detection: a survey”, IEEE Transactions on Industrial Electronics, 55, 1, pp:348-363.
  • 16. Levine M. 2000. Texture segmentation using Gabor filter. Image Processing & Comminication Course Tehnical Report. http://www.cs.huji.ac.il/~simonp/papers/ip_project.pdf. 15.11.2012.
  • 17. Jain A.K., Farrokhnia F., 1991, “Unsupervised texture segmentation using Gabor filters”, Pattern Recognation, 24(12), pp:1167–1186.
  • 18. Porat M. and Zeevi Y.Y., 1988, “The generalized Gabor scheme of image representation in biological and machine vision”, IEEE Transactions on Pattern Analysis and Machine Intelligence. 10, pp:452– 468.
  • 19. Bovik A.C., Clark M., Geisler W.S., 1990, “Multichannel texture analysis using localized spatial filters”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 1, pp:55–73.
  • 20. Grigorescu S.E., Petkov N., Kruizinga P., 2002, “Comparison of texture features based on Gabor filters”, IEEE Transactions on Image Processing, 11, 1, pp:1160-1167.
  • 21. Petkov N and Wieling M.B., 2008, “Gabor for image processing and computer vision”, http://matlabserver.cs.rug.nl/edgedetectionweb/ web/edgedetection_params.html, 15.11.2012.
  • 22. Cho C. S., Chung B. M. and Moo-Jin P., 2005, “Development of real-time vision-based fabric inspection system”, IEEE Transactions on Industrial Electronics, 52, pp:1073-1079.
  • 23. Stojanovic R., Mitropulos P., Koulamas C., Karayiannis Y., Koubias S. and Papadopoulos G., 2001, “Real-time vision-based system for textile fabric inspection”, Real-Time Imaging, 7, pp:507-518.
  • 24. Mak K. L., Peng P., Lau H.YK., 2005, “A real-time computer vision system for detecting defects in textile fabrics”, IEEE International Conference on Industrial Technology, Hong Kong, China, pp: 469-474.