A study on coating with nanoclay on the production of flame retardant cotton fabrics

Bu çalışmada, kil bazlı montmorillonit olan ticari nanokil (Cloisite 20A) kullanılarak % 100 pamuklu kumaşların güç tutuşurluk özellikleri geliştirilmeye çalışılmıştır. Örneklerin güç tutuşurluk ve termal bozunma davranışları; dikey yanma testi, sınırlı oksijen indeksi testi (LOI) ve termogravimetrik analizlerle (TGA) karakterize edilmiştir. İşlem görmemiş ve işlem görmüş kumaşların yüzey morfolojisi bir tarama elektron mikroskobu (SEM) kullanılarak incelenmiştir. Cloisite 20A, işlem görmemiş ve kaplanmış kumaşların Fourier-dönüşümü kızılötesi spektroskopisi (FTIR) analizi yapılmıştır. Testlerin sonuçları, düşük nanokil konsantrasyonunda dahi kaplama işleminin önemli bir güç tutuşurluk etkisinin elde edilmesinde yeterli olduğunu göstermiştir. Bu sonuç, nanokilin bariyer etkisine dayandırılmıştır.

A study on coating with nanoclay on the production of flame retardant cotton fabrics

In this study, flame retardant properties of 100% cotton fabrics were tried to be improved by using commercial nanoclay (Cloisite 20A) which is a clay based montmorillonite. Flame retardancy and thermal decomposition behavior of the samples were characterized by the vertical burning test, limiting oxygen index (LOI), and thermogravimetric analysis (TGA). The surface morphology of untreated and treated fabric was examined using a scanning electron microscope (SEM). Fourier-transform infrared spectroscopy (FTIR) analysis was carried out for Cloisite 20A, untreated and coated fabrics. The results of the tests showed that the coating treatment even at low nanoclay concentration is enough to have a considerable flame retardant effect. This result was attributed to the barrier effect of the nanoclay.

Kaynakça

Liu HS, Zhang XL, Song LX. (2011) Comprehensive evaluation and prediction of fire accidents in China based on statistics. China Saf Sci J 21(6), p.54-59.

Cordner A, Mulcahy M, Brown P. (2013). Chemical regulation on fire: rapid policy advances on flame retardants. Environ Sci Technol. https://doi.org/10.1021/es3036237.

Gao D, Li R, Lv B, Ma J, Tian F, Zhang J. (2015). Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric. Composites Part B. https://doi.org/10.1016/j.compositesb.2015.03.061.

Holder KM, Smith RJ, Grunlan JC. (2017). A review of flame retardant nanocoatings prepared using layer-by-layer assembly of polyelectrolytes. J Mater Sci. https://doi.org/10.1007/s10853-017-1390-1.

Du L, Xu G, Zhang Y, Qian J, Chen J. (2011). Synthesis and properties of a novel intumescent flame retardant (IFR) and its application in halogen-free flame retardant ethylene propylene diene terpolymer (EPDM). Polym Plast Tech Eng. https://doi.org/10.1080/03602559.2010.543224.

Yuan H, Xing W, Zhang P, Song L, Hu Y. (2012). Functionalization of cotton with UV cured flame retardant coatings. Indust Eng Chem Res. https://doi.org/10.1021/ie202468u.

Zhang DQ, Williams BL, Shrestha SB, Nasir Z, Becher EM, Lofink BJ, Santos VH, Patel H, Peng XH, Sun LY. (2017). Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2017.06.087.

Başyiğit ZO, Kut D. (2018). Formaldehyde-free and halogen-free flame retardant finishing on cotton fabric. Tekst Konfeksiyon. https://doi.org/10.32710/tekstilvekonfeksiyon.482884.

Ghoranneviss M, Shahidi S. (2014). Flame retardant properties of plasma pretreated/metallic salt loaded cotton fabric before and after direct dyeing. J Fusion Energ. https://doi.org/10.1007/s10894-013-9642-9.

Carosio F, Alongi J, Malucelli G. (2012). Layer by layer ammonium polyphosphate based coatings for flame retardancy of polyester-cotton blends. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2012.02.049.

Shahidi S, Ghoranneviss M. (2014). Effect of plasma pretreatment followed by nanoclay loading on flame retardant properties of cotton fabric. J Fusion Energ. https://doi.org/10.1007/s10894-013-9645-6.

Ghosh A. (2011). Nano-clay particle as textile coating. Int J Eng Technol IJET-IJENS 11(5), p.34-36.

Uddin F. (2008). Clays, nanoclays and montmorillonite minerals. Metall Mater Trans A. https://doi.org/10.1007/s11661-008-9603-5.

Başyiğit ZÖ. (2018). Improvement of flame retardant characteristic of raw silk fabric. Tekst Konfeksiyon 28(3), p.199-206.

Shah AR, Prabhakar MN, Song J. (2017). Current advances in the fire retardancy of natural fiber and bio-based composites: A Review. Int J Pr Eng Man-Gt. https://doi.org/10.1007/s40684-017-0030-1.

Guo Y, Chang CC, Halada G, Cuiffo MA, Xue Y, Zuo X, Pack S, Zhang L, He S, Weil E Rafailovich MH. (2017). Engineering flame retardant biodegradable polymer nanocomposites and their application in 3D printing. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2017.01.019.

Majka TM, Leszczyńska A, Kandola BK, Pornwannachai W, Pielichowski K. (2017). Modification of organo-montmorillonite with disodium H-phosphonate to develop flame retarded polyamide 6 nanocomposites. Appl Clay Sci. https://doi.org/10.1016/j.clay.2017.01.012.

Makhlouf G, Hassan M, Nour M, Abdel-monem YK, Abdelkhalik A. (2017). A novel intumescent flame retardant: synthesis and its application for linear low-density polyethylene. Arab J Sci Eng. https://doi.org/10.1007/s13369-017-2443-0.

Rehan M, El-Naggar ME, Mashaly HM, Wilken R. (2018). Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2017.11.007.

Chowdary MS, Kumar M. (2015). Effect of nanoclay on the mechanical properties of polyester and s-glass fiber (Al). IJAST. http://dx.doi.org/10.14257/ijast.2015.74.04.

Bhat G, Hegde RR, Kamath MG, Deshpande B. (2008). Nanoclay reinforced fibers and nonwovens. J Eng Fiber Fabric. https://doi.org/10.1177/155892500800300303.

Qiu X, Li Z, Li X, Zhang Z. (2017). Flame retardant coatings prepared using layer by layer assembly: A review. Chem Eng Sci. https://doi.org/10.1016/j.cej.2017.09.194.

Zeng QH, Yu AB, Lu GQ, Paul DR. (2005). Clay-based polymer nanocomposites: research and commercial development. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2005.411.

Mittal G, Rhee KY, Mišković-Stanković V, Hui D. (2018). Reinforcements in multi-scale polymer composites: Processing, properties, and applications. Compos B Eng. https://doi.org/10.1016/j.compositesb.2017.11.028.

Azeez AA, Rhee KY, Park SJ, Hui D. (2013). Epoxy clay nanocomposites - processing, properties and applications: A review. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2012.04.012.

Yelkovan S, Yılmaz D, Aksoy K. (2014). A study of organo-modified clay type on pet-clay based nanocomposite properties. UUJMS 3(1), p.33-46.

Visakh PM. (2015). Advances in flame retardant of different types of nanocomposites. In: PM. Visakh, Y. Arao (Eds.), In Flame Retardants: Polymer Blends, Composites and Nanocomposites, Springer Press, New York, p.1-14.

Cao GF, Sun Y, Chen JG, Song LP, Jiang JQ, Liu ZT, Liu ZW. (2014). Sutures modified by silver-loaded montmorillonite with antibacterial properties. Appl Clay Sci. https://doi.org/10.1016/j.clay.2014.03.007.

Bourbigot S, Devaux E, Flambard X. (2002). Flammability of polyamide-6/clay hybrid nanocomposite textiles. Polym Degrad Stab. https://doi.org/10.1016/S0141-3910(01)00245-2.

Li YC, Schulz J, Mannen S, Delhom C, Condon B, Chang S, Zammarano M, Grunlan JC. (2010). Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano. https://doi.org/10.1021/nn100467e.

BS 5438:1989 Methods of test for flammability of textile fabrics when subjected to a small igniting flame applied to the face or bottom edge of vertically oriented specimens - ISBN:0 580 17341 0 https://shop.bsigroup.com.

ASTM D 2863:1997 Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (Oxygen Index) https://www.astm.org.

Zhu P, Sui S, Wang B, Sun K, Sun G. (2004). A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2003.09.005.

Zhu FL, Li KJ. (2011). Numerical modeling of heat and moisture through wet cotton fabric using the method of chemical thermodynamic law under simulated fire. Fire Technol. https://doi.org/10.1007/s10694-010-0201-x.

Yapar S. (2009). Physicochemical study of microwave-synthesized organoclays. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2009.04.032.

Madejová J, Komadel P. (2001). Baseline studies of the clay minerals source society: infrared methods. Clays Clay Miner 49(5), p.410-432.

Sartori C. (1997). The characterisation of alginate systems for biomedical applications (Doctoral dissertation). Brunel University, Department of Materials Engineering, London.

Kaynak Göster

Bibtex @araştırma makalesi { tekstilvekonfeksiyon675352, journal = {Textile and Apparel}, issn = {1300-3356}, eissn = {2602-3075}, address = {Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma Uygulama Merkezi 35100 Bornova - İZMİR}, publisher = {Ege Üniversitesi}, year = {2020}, volume = {30}, pages = {302 - 311}, doi = {10.32710/tekstilvekonfeksiyon.675352}, title = {A study on coating with nanoclay on the production of flame retardant cotton fabrics}, key = {cite}, author = {Kertmen, Nuriye and Dalbaşı, Eylen Sema and Körlü, Ayşegül and Özgüney, Arif and Yapar, Saadet} }
APA Kertmen, N , Dalbaşı, E , Körlü, A , Özgüney, A , Yapar, S . (2020). A study on coating with nanoclay on the production of flame retardant cotton fabrics . Textile and Apparel , 30 (4) , 302-311 . DOI: 10.32710/tekstilvekonfeksiyon.675352
MLA Kertmen, N , Dalbaşı, E , Körlü, A , Özgüney, A , Yapar, S . "A study on coating with nanoclay on the production of flame retardant cotton fabrics" . Textile and Apparel 30 (2020 ): 302-311 <https://dergipark.org.tr/tr/pub/tekstilvekonfeksiyon/issue/58923/675352>
Chicago Kertmen, N , Dalbaşı, E , Körlü, A , Özgüney, A , Yapar, S . "A study on coating with nanoclay on the production of flame retardant cotton fabrics". Textile and Apparel 30 (2020 ): 302-311
RIS TY - JOUR T1 - A study on coating with nanoclay on the production of flame retardant cotton fabrics AU - Nuriye Kertmen , Eylen Sema Dalbaşı , Ayşegül Körlü , Arif Özgüney , Saadet Yapar Y1 - 2020 PY - 2020 N1 - doi: 10.32710/tekstilvekonfeksiyon.675352 DO - 10.32710/tekstilvekonfeksiyon.675352 T2 - Textile and Apparel JF - Journal JO - JOR SP - 302 EP - 311 VL - 30 IS - 4 SN - 1300-3356-2602-3075 M3 - doi: 10.32710/tekstilvekonfeksiyon.675352 UR - https://doi.org/10.32710/tekstilvekonfeksiyon.675352 Y2 - 2020 ER -
EndNote %0 Tekstil ve Konfeksiyon A study on coating with nanoclay on the production of flame retardant cotton fabrics %A Nuriye Kertmen , Eylen Sema Dalbaşı , Ayşegül Körlü , Arif Özgüney , Saadet Yapar %T A study on coating with nanoclay on the production of flame retardant cotton fabrics %D 2020 %J Textile and Apparel %P 1300-3356-2602-3075 %V 30 %N 4 %R doi: 10.32710/tekstilvekonfeksiyon.675352 %U 10.32710/tekstilvekonfeksiyon.675352
ISNAD Kertmen, Nuriye , Dalbaşı, Eylen Sema , Körlü, Ayşegül , Özgüney, Arif , Yapar, Saadet . "A study on coating with nanoclay on the production of flame retardant cotton fabrics". Textile and Apparel 30 / 4 (Aralık 2020): 302-311 . https://doi.org/10.32710/tekstilvekonfeksiyon.675352
AMA Kertmen N , Dalbaşı E , Körlü A , Özgüney A , Yapar S . A study on coating with nanoclay on the production of flame retardant cotton fabrics. Textile and Apparel. 2020; 30(4): 302-311.
Vancouver Kertmen N , Dalbaşı E , Körlü A , Özgüney A , Yapar S . A study on coating with nanoclay on the production of flame retardant cotton fabrics. Textile and Apparel. 2020; 30(4): 302-311.
IEEE N. Kertmen , E. Dalbaşı , A. Körlü , A. Özgüney ve S. Yapar , "A study on coating with nanoclay on the production of flame retardant cotton fabrics", Textile and Apparel, c. 30, sayı. 4, ss. 302-311, Ara. 2021, doi:10.32710/tekstilvekonfeksiyon.675352