EFFECT OF DEPOSITION TIME ON THE OPTOELECTRICAL PROPERTIES OF ELECTROSPUN PAN/AGNO3 NANOFIBERS

The aim of this study is to produce optically transparent nanofibers with adequate electrical conductivity for optoelectrical applications where transparency and conductivity are needed. Therefore, conducting polyacrylonitrile/silver nitrate (PAN/AgNO3) nanofibers were produced by electrospinning with different deposition times ranging from 1 minute to 10 minutes. The effect deposition time on the sheet resistance and optical transparency of the nanofibers were investigated. The surface characteristics, electrical properties and transmittance values of the electrospun mats were evaluated. Nanofibers with diameters under 700 nm were obtained. With the increasing deposition time, the sheet resistance and transparency of the samples were decreased. In order to figure out the optimum deposition time, figure of merit of the samples were calculated. Figure of merit results showed that the sample deposited for three minutes had the best performance among the others. It was seen that the results were comparable with the literature and conducting PAN/AgNO3 nanofibers are promising for future applications.

___

  • 1. Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp. Sci. and Technol., 63 (15): 2223-2253.
  • 2. Bhardwaj, N., Kundu, S.C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28: 325-347.
  • 3. Greiner, A., Wendorff, J.H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chemie Int. Ed., 46: 5670-5703.
  • 4. Li, D.., Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel?, Adv. Mater., 16:1151-1171.
  • 5. Almetwally, A.A., El-Sakhawy, Mohamed, Elshakankery, M.H., Kasem, M.H.. (2017). Technology of nano-fibers: production techniques and properties - critical review, Journal of the Textile Association, 78:5-14.
  • 6. Nayak, R., Padhye, R., Kyratzis, I.L., Truong, Y.B., Arnold, L. (2012). Recent advances in nanofibre fabrication techniques, Text. Res. J. 82:129-147.
  • 7. Hu, L., Wu, H., Cui, Y. (2011). Metal nanogrids, nanowires, and nanofibers for transparent electrodes, MRS Bulletin Cambridge, 36(10):760-776.
  • 8. Wu, H., Hu, L., Rowell, M.W., Kong, D., Cha, J.J., McDonough, J.R., Zhu, J., Yang, Y., McGehee, M.D., Cui, Y. (2010). Electrospun metal nanofiber webs as high-performance transparent electrode, Nano Lett. 10(10): 4242-4248.
  • 9. Li, H., Pan, W., Zhang, W., Huang, S., Wu, H. (2013). TiN Nanofibers: A New Material with High Conductivity and Transmittance for Transparent Conductive Electrodes, Adv. Funct. Mater. 23(2):209-214.
  • 10. MacDiarmid, A.G. (2001). "Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture), Angew. Chemie Int. Ed. 40(14):2581-2590.
  • 11. Zhao, W., Yalcin, B., Cakmak, M. (2015). Dynamic assembly of electrically conductive PEDOT:PSS nanofibers in electrospinning process studied by high speed video, Synth. Met. 203:107-116.
  • 12. Wang, Y., Jing, X. (2007). Transparent conductive thin films based on polyaniline nanofibers, Mater. Sci. Eng., B. 138:95-100.
  • 13. Chronakis, I. S., Grapenson, S., Jakob, A. (2006). Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties, Polymer, 47(5), 1597-1603.
  • 14. Duzyer, S. (2019). Different Methods of Fabricating Conductive Nanofibers, Tekstil ve Konfeksiyon, 29(1):78-85.
  • 15. Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H., Yang, G.L., Li, C., Willis, P. (2003). Electrospinning of continuous carbon nanotube-filled nanofiber yarns, Adv. Mater. 15(14):1161-1165.
  • 16. Fu, Y., Liu, L., Zhang, L., Wang, W. (2014). Highly conductive one-dimensional nanofibers: silvered electrospun silica nanofibers via poly(dopamine) functionalization, ACS Appl Mater Interfaces. 6(7):5105-5112.
  • 17. Demirsoy N., Uçar N., Önen, A., Karacan, I., Kızıldağ, I., Eren, O., Borazan, I. (2014). The effect dispersion technique, silver particle loading and reduction method on the properties of polyacrylonitrile-silver composite nanofiber, Journal of Industrial Textiles, 45(6), 1173-1187.
  • 18. Ucar, N., Demirsoy, N., Onen, A., Karacan, I., Kizildag, N:, Eren, O., Vurur, O.F., Sezer, E., Ustamehmetoglu B. (2015). The effect of reduction methods and stabilizer (PVP) on the properties of polyacrylonitrile (PAN) composite nanofibers in the presence of nanosilver, Journal of Materials Science, 50(4): 1855-1864.
  • 19. Rashid, M.U., Bhuiyan, Md. K.H., Quayum, M. E. (2013). Synthesis of silver nano particles (ag-nps) and their uses for quantitative analysis of vitamin c tablets, Dhaka Univ. J. Pharm. Sci. 12(1):29-33.
  • 20. Çunayev, Ş., Düzyer, Ş., Tezel, S., Koral Koç, S. (April, 2019). Effect of Reduction Time on the Electrical Properties of PAN/AgNO3 Nanofibers”, 2nd International Congress on Engineering and Life Sciences (ICELIS), Kastamonu, Turkey, 2019
  • 21. Kim, Y.S., Park, J.H., Choi, D.H., Jang, H.S., Lee, J.H., Park, H.J., Choi, J.I., Ju, D.H., Lee, J.Y., Kim, D. (2007). ITO/Au/ITO multilayer thin films for transparent conducting electrode applications, Appl. Surf. Sci. 254, 1524-1527.
  • 22. Haacke, G. (1976). New figure of merit for transparent conductors, J. Appl. Phys. 47:4086-4089.