Silt Biriminde (Kastamonu, Türkiye) Yapılan Menard Presiyometre, Standart Penetrasyon ve Laboratuvar Deney Sonuçları Arasındaki İlişkilerin Araştırılması

Zeminlerin deformasyon özelliklerinin belirlenmesi geoteknik tasarımların en önemli unsurlarındandır. Laboratuvar testlerinin zemin kütlelerini yeterince temsil edememesi, güvenilirlerin ise pahalı olması çeşitli arazi deneylerin geliştirilmesini sağlamıştır. Menard presiyometre testi geoteknik incelemelerde oldukça doğru sonuçlar vermesinin yanında fazla zaman, maliyet ve tecrübe gerektirmektedir. Bu nedenle bu parametrelere daha ucuz yöntemlerle ve deneysel denklemlerle ulaşmak ihtiyacı doğmaktadır. Bu çalışmada Kastamonu’da yürütülen bir incelemede kumlu siltlerde elde edilen Menard presiyometre, standart penetrasyon ve bazı laboratuvar test verileri arasındaki korelasyonlar incelenmiş, regresyon analizleri yapılmış, determinasyon katsayıları yüksek denklemler elde edilmiştir

Examination of Relationships Between Menard Pressuremeter, Standard Penetration and Laboratory Tests Data on The Silty Soil (Kastamonu, Turkey)

Examination of Relationships Between Menard Pressuremeter, Standard Penetration and Laboratory Tests Data on The Silty Soil (Kastamonu, Turkey) Determining the deformation characteristics of soils is one of the most important parameters of geotechnical designs. Since the laboratory tests could not represents soil masses and obtaining reliable specimens is expensive, various in-situ tests have been developed. Menard pressuremeter test gives realistic results, but it requires excessive time, cost and experience. Hence, cheaper methods are needed to obtain parameters indirectly. In this study correlations between Menard pressuremeter, standard penetration and some laboratory tests data are investigated during a research conducted for the sandy silt in Kastamonu. Equations were derived with regression analyses which yielded high coefficients of correlation

___

  • Mair R.J., Wood D.M., Pressuremeter testing methods and interpretation, CIRIA, ISSN:0-408-02434-8, 1987.
  • Isik N.S., Doyuran V., Ulusay R., Assessment of Deformation Modulus of weak rock masses from Pressuremeter Tests and seismic surveys. Bull Eng Geol Environ 67, s 293–303, 2008.
  • Isik N.S., Ulusay R., Doyuran V., Deformation Modulus of heavily jointed-sheared and block greywackes by Pressuremeter Tests: Numerical, experimental and empirical assessments. Eng Geol 101, s 269–282, 2008.
  • Lashkaripour R.G., Ajalloeian R., Determination of silica sand stiffness, Engineering Geology 68, 2003.
  • Kayabasi A., Gokceoglu C., Ercanoglu M., Estimating the deformation modulus of rock masses: a comparative study, Int J Rock Mech Min Sci 40 (1), s 55-63, 2003.
  • Gokceoglu C., Sonmez H., Kayabasi A., Predicting deformation moduli of rock masses, Int J Rock Mech Min Sci 41 (2), s 337-341, 2003.
  • Sonmez H., Gokceoglu C., Nefeslioglu H.A., Kayabasi A., Estimation of rock modulus, Int J Rock Mech Min Sci 43 (2), s 224-235, 2006.
  • Sharma P.K., Singh T.N., A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial strength index, Bull Eng Geol Environ 67, s
  • Hobbs N.B., Dixon J.C., In situ testing for bridge foundations in the devonian marl, Proceedings of the conference on in situ investigations in soils and rocks, British Geotechnical Society, London, May 13-15, s 31–38, 1969.
  • Baguelin F., Jezequel J.F., Shields D.H., The Pressuremeter and foundation engineering, Trans Tech Publications, 1978.
  • Kulhawy F.H., Mayne P.W., Manual on estimating soil properties for foundation design, Electic Power Research Institute, Palo Alto, 1990.
  • Akca N., Correlation of SPT–CPT data from the United Arab Emirates, Eng Geol 67 (3/4), s 219–231, 2003.
  • Hasancebi N., Ulusay R., Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments. Bull Eng Geol Environ 66, s 203–213, 2007.
  • Windle D., Wroth C.P., The use of a self boring pressuremeter to determine the undrained properties of clays, Ground Engineering 10 (6), s 37–46, 1997.
  • Arulrajah A., Nikraz H., Bo M.W., In-situ testing of Singapore marine clay at Changi, Geotech Geol Eng 23, s 111–130, 2005.
  • Ohya S., Imai T., Matsubara M., Relationship between N value by SPT and LLT Pressuremeter Results, Proceedings, 2. European symposium on penetration testing 1, s 125–130, 1982.
  • Gonin H., Vandangeon P., Lafeullade M.P., Correlation study between standard penetration and Pressuremeter Tests, Rev Fr Ge´otech 58, s 67–78, 1992.
  • Yagiz S., Akyol E., Sen G., Relationship between the Standard Penetration Test and the Pressuremeter Test on sandy silty clays: a case study from Denizli, Bull Eng Geol Environ 67, s 405–410, 2008.
  • Bozbey I., Togrol E., Correlation of standart penetration test and Pressuremeter data: a case study from Istanbul, Turkey, Bull Eng Geol Environ 69, s 505-515, 2010.
  • Kayabasi A., Prediction of pressuremeter modulus and limit pressure of clayey soils by simple and non-linear multiple regression techniques: a case study from Mersin, Turkey, Environ Earth Sci 66, s 2171-2183, 2012.
  • Lee M.J., Hong S.J., Choi Y.M., Lee W., Evaluation of deformation modulus of cemented sand using CPT and DMT, Eng Geol 115, s 28-35, 2010.
  • Akça N., Correlation of SPT-CPT data from United Arab Emirates, Eng Geol 67, s 219-231, 2003.
  • Cassan M., Les essays in situ en mecanique des sols, Construction, No 10, s 337–347, 1968.
  • Waschkowski E., Penetrometretres dynamiques, Comtes rendus des journess des laboratoires des ponts et chaussees, Saint-Brieue, 19-21 Novembre, s 1–37, 1974.
  • Yaman G., Prediction of geotechnical properties of cohesive soils from in-situ tests: an evaluation of a local database, Thesis, METU, Ankara, s 161, 2007.
  • Chiang Y.C., Ho Y.M., Pressuremeter method for foundation design in Hong Hong, Proceedings of sixth Southeast Asian conference on soil engineering 1, s 31–42, 1980.
  • Apte M.G., Price P.N., Nero A.V., Revzan K., Predicting New Hampshire indoor radon concentrations from geologic information and other covariates, Env Geol 37, s 181–194, 1999.
  • Uddameri V., Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas, Environ Geol 51, s 885–895, 2007.
  • Benavente D., Cueto N., Martinez–Martinez J., Garcia Del Cura M.A., Canaveras JC., The influence of petrophysical properties on the salt weathering of porous building rocks, Environ Geol 52, s 197–206, 2007.
  • Sivrikaya O., Models of compacted fine-grained soils used as mineral liner for solid waste, Environ Geol 53, s 1585–1595, 2008.
  • Iphar M., Yavuz M., Ak H., Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system, Env Geol 56, s 97–107, 2008.
  • Gunaydin O., Estimation of soil compaction parameters by using statistical analyses and artificial neural networks, Environ Geol 57, s 203–215, 2009.
  • Yagiz S., Gokceoglu C., Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness, Expert Syst Appl 37, s 2265–2272, 2010.
  • Chen-Chang L., Cheng-Haw L., Hsin-Fu Y., Hung-I L., Modeling spatial fracture intensity as a control on flow in fractured rock, Environ Earth Sci 63, s 1199–1211, 2011.
  • Yagiz S., Gokceoglu C., Sezer E., Iplikci S., Application of two non-linear prediction tools to the estimation of tunnel boring machine performance, Eng Appl Artif Intell 22, s 818–824, 2009.
  • Alvarez Grima M., Babuska R., Fuzzy model for the prediction of unconfined compressive strength of rock samples, Int J Rock Mech Min Sci 36, s 339–349, 1999.
  • Finol J., Guo Y.K., Jing X.D., A rule based fuzzy model for the prediction of prediction of petrophysical rock parameters, J Petr Sci Eng 29, s 97–113, 2001.
  • Gokceoglu C., A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition, Eng Geol 66 (1–2), s 39–51, 2002.
  • Gokceoglu C., Zorlu K., A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock, Eng Appl Artif Intell 17 (1), s
  • Zorlu K., Gokceoglu C., Ocakoglu F., Nefeslioglu H.A., Acikalin S., Prediction of uniaxial compressive strength of sandstones using petrography-based models, Eng Geol 96 (3/4), s 141–158, 2008.
  • Dagdelenler G., Sezer E.A., Gokceoglu C., Some non-linear models to predict the weathering degrees of a granitic rock from physical and mechanical parameters, Expert Syst Appl 38, s 7476–7485, 2011.
  • Kogler F., Baugrundpru fung im bohrloch, Der bauingenieur, 1933.
  • Menard L., An apparatus for measuring the strength of soils in place, Thesis, University of Illinois, 1957.
  • Centre D’Etudes Menard, The Menard Pressuremeter Interpretation and Application of Pressuremeter Test Results to Foundation Design, No.26, Sols Soils, France, 1975.
  • Clarke B.G., Pressuremeters in geotechnical design, Blackie Academic and Professional, Chapman & Hall, London, 1995.
  • Coduto, D.P., Geotechnical Engineering: Principles and Practices, California State Polytechnic University, Publisher: Prentice Hall, 1999.
  • ASTM D4719, Standard test method for pre-bored Pressuremeter Testing in soils ASTM International, West Conshohocken, 2000.
  • Lee K.M., Rowe R.K., Deformation caused by surface loading and tunnelling: the role of elastic anisotropy, Geotechnique 39 (1), s 125–140, 1989.
  • Schields D.H., Bauer G.E, Determination of Modulus of Deformation of sensitive clay using laboratory and in situ tests, Proceedings of ASCE special conference, In situ measurement of soil properties 1, Raleigh, s 395–421, 1975.
  • Bowles J.E., Foundation analysis and design, 5th edn, McGraw-Hill, USA, 1997.
  • Thorburn S., Field testing: the standard penetration test, Hawkins AB (ed) Site investigation practice: Assessing BS (British Standard) 5930, British Standards Institution, HMSO, London, s 31–32, 1986.
  • Skempton A.W., Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation, Geotechnique 36 (3), s 425-447, 1986.
  • British Standards Institution, BS EN ISO 22476-3: Geotechnical investigation and testing - Field testing – B.S.I., London, (Part 3: Standard penetration test), 2007.
  • ASTM D1586, Standard test method for penetration test and split- barrel sampling of soils, ASTM International, West Conshohocken, 1999.
  • Aggour M.S., Radding W.R., Standard Penetration Test (SPT) correction, Research report submitted to Maryland Department Of Transportation, Report No. SP007B48, State Highway Administration, 2001.
  • Sengun M., Keskin H., Akcoren F., Altun I., Sevin M., Akat U., Armagan F., Acar S., Geology of the Kastamonu region and geological constraints for the evolution of the Paleotethyan domain, Geological Bulletin of Turkey 13, s 1-16, 1990.
  • Birand A., Shallow foundations, Teknik Yayınevi (in Turkish), 2006.
  • Sivrikaya O., Togrol E., Determination of undrained strength of fine-grained soils by means of SPT and its application in Turkey, Eng Geol 82, s 52–69, 2006.
  • ISRM (International Society for Rock Mechanics), “The complete ISRM suggested methods rock characterization, testing and monitoring:1974-2006”, Editors: R. Ulusay, J.A. Hudson, ISBN: 978-975-93675-4-1, Kozan Ofset, Ankara, Turkey, s 613, 2007.
  • Phoon K.K., Kulhawy F.H., Evaluation of geotechnical variability, Can Geotech J 36, s 625–639, 1999.