Prens Adaları Fayında Kuvvetli Yer Hareketi Benzeşimleri

Bu çalışmanın temel amacı, mühendislik yapılarının doğrusal ve doğrusal olmayan zaman ortamı analizlerine girdi verisi oluşturmak için, Prens Adaları Fayı’nın kırılmasıyla meydana gelmesi muhtemel büyük bir deprem sonrasında oluşacak yer hareketi dalga formlarını geniş bir frekans bant aralığında tahmin etmektir. Benzeşimlerin hesaplanmasında Hutchings ve Wu (1990) [1], tarafından geliştirilen fiziksel tabanlı yırtılma süreçlerini göz önüne alan Green Fonksiyonlar yöntemi kullanılmış ve farklı kaynak parametrelerinin bu dalga formlarının genlik ve frekans içeriklerini nasıl etkilediği incelenmiştir. Elde edilen dalga formlarında alçak frekans bandındaki enerji dikkat çekicidir ve bu husus, bölgede meydana gelebilecek büyük manyetüdlü depremlerde oluşabilecek yer hareketinin karakteristiği konusunda önemli ipuçları vermektedir

-

Strong Ground Motion Simulations Around Princes Islands Fault The main objective of this study is to simulate broad-frequency-band strong ground motion waveforms resulted from the rupture of Prince Islands Fault, to provide input accelerograms for linear and non-linear time history analyses of the engineering structures. Simulations are performed using Green’s Function methodology developed by Hutchings and Wu (1990) [1]. The methodology considers physical based rupture process and takes into account different source parameters to investigate their effects on amplitude and frequency content of simulated waveforms. As a result, the low frequency energy content of the simulated waveforms has significant role in the characteristic of strong ground motion for large earthquakes in Marmara region

___

  • Hutchings, L. And Wu, F., Empirical Green’s Functions From Small Earthquakes: A Waveform Study of Locally Recorded Aftershocks of the San Fernando Earthquake, J. Geophys. Res., 95, 1187-1214, 1990.
  • Fahjan, M. Y., Türkiye Deprem Yönetmeliği (DBYBHY,2007) Tasarım İvme Spektrumuna Uygun Gerçek Deprem Kayıtlarının Seçilmesi ve Ölçeklenmesi, İMO Teknik Dergi, 292, 4423-4444, 2008.
  • Abrahamson, N. A., Non-stationary Spectral Matching Program RSPMATCH, PG&E Internal Report, 1998.
  • Erdik, M., Durukal, E., Siyahi, B., Fahjan, Y., Şeşetyan, K., Demircioğlu, M., Akman, H., Depreme Dayanıklı Yapı Tasarımında Deprem Yer Hareketinin Belirlenmesi, Beşinci Ulusal Deprem Mühendisliği Konferansı, İstanbul, 26-30 Mayıs 2003.
  • Bommer, J. J., Acevedo, A. B., Douglas, J., The Selection and Scaling of Real Earthquake Accelograms for Use in Seismic Design and Assesment, Proceedings of ACI International Conference on Seismic Bridge Design and Retrofit, American Concrete Institute, 2003.
  • Naeim, F., Kelly, J. M., Design of Seismic Isolated Structures: From Theory to Practice, John Wiley &Sons, 1999.
  • Barka, A.A., Slip distribution along the North Anatolian Fault associated with large earthquakes of the period 1939 to 1967, Bull. Seismol. Soc. Am., 86, 1238- 1254.
  • Toksoz, M.N., A.F. Shakal, and A.J. Micheal, Space-time migration of earthquakes along the North Anatolian Fault and seismic gaps, Pure Appl. Geophys, 117, 1258- 1270.
  • Pinar, A., Kuge, K., Honkuro, Y., Moment tensor inversion of recent small to moderate sized earthquakes: implications for seismic hazard and active tectonics beneath the Sea of Marmara. Geophys. J. Int., 153, 133–145, 2003.
  • Hutchings, L., "Prediction" of Strong Ground Motion for the 1989 Loma Prieta Earthquake Using Empirical Green’s Functions. Bull, Seismol. Soc. Am, 81, 88–121, 1991.
  • Hadley, D. M., Helmberger D. V., Simulation of Strong Ground Motions. Bull. Seism. Soc. Am. , 70, 617-630, 1980.
  • Boore, D. M., Stochastic Simulation of High-Frequency Ground Motions Based on Seismological Models of theRadiated Spectra, Bulletin of the Seismological Society of America 73, 1865-1894, 1983.
  • Irikura, K., Semi-Empirical Estimation of Strong Ground Motions During Large Earthquakes. Bull. Disaster Prevention. Res. Inst Kyoto Univ. 33, 63–104, 1983.
  • Kramer S. T., Geotechnical Earthquake Enginnering, Prentice-Hall, Inc, 1996.
  • Hartzell, S. H., Earthquake Aftershocks as Green’s Functions, Geophys.Res.Lett, 5, 1- 4, 1978.
  • Wu, F., Prediction of Strong Ground Motion Using Small Earthquakes, Proceedings of the 2nd International Conference on Microzonation. Vol II San Francisco, 701-704, 1978.
  • Aki, K., Seismic Displacements Near a Fault, J. Geophys. Res., 73,5359-5376, 1968.
  • Bouchon, M. Aki, K.., Discrete Wave-Number Representation of Seismic Wavefields, Bull. Seism.Soc. Am. 67, 259-277, 1977.
  • Brune, J.N., Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. Geophys. Res.,75, 4997–5010, 1970, (Correction, J. Geophys. Res. 76 (20), 5002, 1971)
  • McGuire R. K., Hanks, T.C., RMS Acceleration and Spectral Amplitudes of Strong Ground Motion During the San Fernando, California Earthquake, Bull. Seism.Soc. Am. 70, 1907-1919, 1980.
  • Atkinson, G. M., Silva, W., Stochastic Modeling of California Ground Motions, , Bull. Seism.Soc. Am. 90, 255-274, 2000.
  • Boore, D. M., Simulation of Ground Motion Using the Stochastic Method, Pure appl. Geophys. 160, 635-676, 2003.
  • Beresnev, I., Atkinson, G., Modelling Finite Fault Radiation from the n Spectrum, Bull. Seism.Soc. Am. 87, 67-84,1997.
  • Tanırcan, G., İstanbul için 3 boyutlu hız modeli ile yer hareketi simülasyonu, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Cilt 27, No 1, 27-35, 2012.
  • Erdik M., Durukal, E., A Hybrid Procedure for the Assesment of Design Basis Earthquake Ground Motions for Near-Fault Conditions, Soil Dynamics and Earthquake Engineering, 21, 431-443, 2001.
  • Pulido N, Ojeda A, Atakan K, Kubo T., Strong Ground Motion Estimation in the Sea of Marmara Region (Turkey) Based on a Scenario Earthquake, Tectonophysics, 391:357–374, 2004.
  • Mathilde, B. S., Pulido, N., Atakan, K., Sensitivity of Ground Motion Simulations to Earthquake Source Parameters: A Case Study for Istanbul, Turkey, Bull. Seism.Soc. Am. 97, 881-900, 2007.
  • Ansal, A., Akıncı, A., Cultera, G., Erdik, M., Pessina, V., Tönük, G., Ameri, G., Loss Estimataion in İstanbul Based on Deterministic Earthquake Scenarios of The Marmara Sea Region (Turkey), Soil Dynamics and Earthquake Engineering, 29, 699- 709, 2009.
  • Mert A., İstanbul İçin Tasarım Esaslı Kuvvetli Yer Hareketi Dalga Formlarının Zaman Ortamında Türetilmesi, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, 2011.
  • Okay, I.A., Demirbağ, E., Kurt, H., Okay, N., Kuşçu, İ., An active, Deep Marine Strike-Slip Basin Along the North Anatolian Fault in Turkey, Tectonics, V: 18, No: 1, 129-147, 1999.
  • Okay, I.A., Kaşlılar Ö. A., İmren, C., Boztepe G. A., Demirbağ, E., Geometry of Active Faults and Strike Slip Basins in the Marmara Sea, Northwest Turkey: A Multichanel Seismic Reflection Study. NATO Advanced Research Seminar , May 14- 17, 2000, Istanbul, Abstracts 20-21.
  • İmren C., Le Pichon, X., Rangin C., Demirbağ E., Ecevitoğlu B., Görür N., The Anatolian fault within the Sea of Marmara: A new interpretation based on Multi channel seismic and multibeam bathymetry data, Earth Planet Sci Letter, 186, 143- 158, 2001.
  • Le Pichon, X., Sengör, A.M.C., Demirbag, E., Rangin, C., Imren, C., Armijo, R., Görür, N., Cagatay, N., Mercıer De Lepınay, B.,Meyer, B., Saatcılar, R., Tok, B., The active main Marmara fault. Earth Planet. Sci. Lett. 192, 595–616, 2001.
  • Gökaşan, E., Alpar, B., Gazioğlu, C., Yücel, Z.Y., Tok, B., Doğan, E., Guneysu, C., Active Tectonics of the Izmit Gulf (NE Marmara Sea): from High Resolution Seismic and Multi-Beam Bathymetry Data, Mar Geol, 175(1–4):271–294, 2001.
  • Armijo, R., Pondard, N., Meyer, B., Submarine Fault Scarps in the Sea of Marmara Pull-Apart North Anatolian Fault: Implications for Seismic Hazard in Istanbul, Geochem Geophys Geosyst, 6:Q06009:29., 2005.
  • Pınar, A., Kuge, K., Honkura, Y., Moment Inversion of Recent Small to Moderate Sized Earthquakes: Implications for Seismic Hazard and Active Tectonics Beneath the Sea of Marmara, Geophys J Int, 153:133–145, 2003.
  • Orgulu, G., Seismicity and Source Parameters for Small-Scale Earthquakes Along the Splays of the North Anatolian Fault (NAF) In the Marmara Sea, Geophysical Journal International 184, 385-404, 2011.
  • Carton, H., Singh, S.C., Hirn, A., Bazin, S., Voogd, B., Vigner, A., Ricolleau, A., Cetin, S., Oçakoğlu, N., Karakoç., Sevilgen, V., Seismic imaging of the three- dimensional architecture of the Çınarcık Basin along North Anatolian Fault, Journal of Geophysical research, Vol. 112, 2007.
  • Laigle, M., Becel, A., Voogd B., Hirn, A., Taymaz, T., Özalaybey, S., A first Deep Seismic Survey in the Sea of Marmara: Deep Basins and Whole Crust Architecture and Evoluation, Earth Planet. Sci. Lett. 270, 168-179, 2008.
  • Becel, A., Laigle, M., Voogd, B., Hirn, A., Taymaz, T., Galve, A., Shimamura, H., Murai, Y., Lepine, J.C., Sapın, M., Özalaybey, S., Moho, Crustal Architecture and Deep Deformation Under the North Marmara Trough from the SEISMARMARA Leg 1 Offshore-Onshore Reflection-Refraction Survey, Tectonophysics, 467, 1-21, 2009.
  • Yılmaz Y, Gökaşan E, Erbay AA., Morphotectonic Development of the Marmara Region. Tectonophysics doi:10.1016/j.tecto.2009.05.012, 2009.
  • Oncel, A.O. & Wilson, T., Evaluation of earthquake potential along the Northern Anatolian Fault Zone in the Marmara Sea using comparisons of GPS strain and seismotectonics parameters. Tectonophysics., 418:205-218, 2006.
  • Hanks T.C. & Kanamori H. A moment magnitude scale. J. Geophys. Res., 84, 2348- 2350, 1979.
  • Wells D.L. & Coppersmith K.J., New empirical relationships among magnitude,
  • rupture length, rupture width, rupture area and surface displacement. Bull. Seism. Soc. Am., 84: 974-1002, 1994.
  • Larsen S., E3D: 2D/3D Elastic Finite-Difference Wave Propagation Code, 1995.
  • Karabulut H., Özalaybey S., Taymaz T., Aktar M., Selvi O., Kocaoğlu A., A Tomographic Image of the Shallow Crustal Structure in The Eastern Marmara, Geophys. Res. Lett., 30(24, 2777), 2003.
  • Hutchings, L., Program NetMoment, a Simultaneous calculation of Moment, Source Corner Frequency, and Site Specific t* from Network Recordings, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID 135693, 2001.
  • Hutchings, L., Ioannidou, E., Kalogeras, I., Voulgaris, N., Savy, J., Foxall,W., Scognamiglio, L., Stavrakakis, G., A Physically-Based Strong Ground-Motion Prediction Methodology; Application to PSHA and the 1999 M=6.0 Athens Earthquake.Geophys. J. Int., 168,569–680, 2007.
  • Akıncı, A., Malagnini, L., Herrmann, R. B., Gok, R., Sorensen, M. B., Ground Motion Scaling in the Marmara Region, Turkey, Geophys. J. Int. 166, 635-651, 2006.
  • Lama, R.D. and Vutukuri, V.S., Handbook on Mechanical Properties of Rocks, Volume II: Testing Techniques and Results, Trans Tech. Publications, 1978, 245 pp., J. Phys. Earth. 42, 377–397, 1978.
  • Prejean, S.G., Ellsworth, W.L., Observations of Earthquake Source Parameters and Attenuation at 2 km Depth in the Long Valley Caldera, Eastern California, Bull. Seismol. Soc. Am. ,91, 165–177, 2001.
  • Scognamiglio L., Hutchings, L, A test of a Physically-based strong ground motion prediction methodology with the 26 September 1997, Mw=6.0 Colfiorito (Umbria- Marche Sequence), Italy earthquake, Tectonophysics, 476:145-158, 2009.
  • Kostrov, B.V. and S. Das., Principles of earthquake source mechanics. In: Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, 1988.
  • Irikura, K. and K. Kamae:Estimation of strong ground motion in broad-frequency
  • band based on a seismic source scaling model and an empirical Green’s function technique, Annali Di Geofisica, Vol. XXXVII, N.6, 1721-1743, 1994.
  • Beresnev, I. A. and G. M. Atkinson., Modeling finite-fault radiation from the wn spectrum, Bulletin of the Seismological Society of America 87: 67-84, 1997.
  • Kamae, K., Irikura, K. ve Pitarka, A., “A Technique for Simulating Strong Ground motion using Hybrid Green’s Function”, Bull. Seism. Soc. Am., Cilt 88, No 2, 357- 367, 1998.
  • Hartzell, S., S. Harmsen, A. Frankel, and S. Larsen., Calculation of broadband time histories of ground motion: comparison of methods and validation using strong- ground motion from the 1994 Northridge earthquake, Bull. Seism. Soc. Am. 89: 1484–1504, 1999.
  • Pitarka A., Somerville P., Fukushima Y., Uetake T., ve Irikura,K., “Simulation of Near-Fault Strong-Ground Motion Using Hybrid Green's Functions” Bull. Seism. Soc. Am. Cilt 90, 566-586, 2000.
  • Pulido N., Ojeda, A., Kuvvet A. ve Kubo, T.,“Strong Ground Motion Estimation in the Sea Region (Turkey) Based on a Scenario Earthquake”, Tectonophysics, Cilt 391, 357-374, 2004.
  • Graves, R. W., and A. Pitarka., Broadband time history simulation using a hybrid approach, Proc. 13th World Conf. Earthq. Eng., Vancouver, Canada, paper no. 1098, 2004.
  • Mena, B., E. Durukal, and M. Erdik. Effectiveness of hybrid Green’sfunction method in the simulation of near-field strong motion: An application to the 2004 Parkfield earthquake, Bull. Seismol. Soc.Am. 96, 183–205, 2006.
  • Pulido, N., and M. Matsuoka. Broadband Strong Motion Simulation of the 2004 Niigata-ken Chuetsu Earthquake: Source and Site Effects. Third International Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France, 1, 657-666, 2006.
  • Liu, P., R. Archuleta, and S. H. Hartzell., Prediction of broadband ground motion
  • time histories: Frequency method with correlation random source parameters, Bull. Seismol. Soc. Am. 96, 2118–2130, 2006.
  • Rodgers, A. J., E. Matzel, M. Pasyanos, A. Petersson, B. Sjogreen, C. Bono, O. Vorobiev, T. Antoun, and W. Walter (2008). Seismic simulations using parallel computing and three dimensional Earth models to improve nuclear explosion phenomenology and monitoring, 30th Monitoring Research Review, Portsmouth, Virginia, 23–25 September 2008.
  • Mai, P. M., J. Ripperger, J.-P. Ampuero, and J.-P. Hillers (2006). Frontiers in source modeling for near-source ground-motion prediction, in Proc. of the 3rd Int. Symp. on the Effects of Surface Geology on Seismic Motion, Grenoble, France, 30 August–1 September 97–114, 2006.
  • Aki, K., Richards, P.G., Quantitative Seismology, Theory and Methods, Volumes I and II, W. H. Freeman, New York, 1980.
  • Abrahamson, N. A., and W. J. Silva., Summary of the Abrahamson and Silva NGA ground motion relations, Earthq. Spectra 24, no. S1,67–97, 2008.
  • Boore, D. M., and G. M. Atkinson., Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthquake Spectra 24, 99–113, 2008.
  • Campbell, K. W., and Bozorgnia, Y., 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s, Earthquake Spectra 24, 139-171, 2008.
  • Erdik, M., Durukal, E., Şeşetyan, K., Istanbul için kuvvetli yer hareketi Benzeşimi ve yakın saha bölgelerindeki deprem hareketleri özelliklerinin belirlenmesi, Proje Raporu, Proje No:103I050, Istanbul, 2008.