Numerical Modeling of B-Type Hydraulic Jump at an Abrupt Drop

Numerical Modeling of B-Type Hydraulic Jump at an Abrupt Drop

The properties of a B-type hydraulic jump at an abrupt drop are analyzed experimentally and numerically for different flow cases. Using the Standart k-?, Shear Stress Transport and Reynolds Stress turbulence closure models, the governing equations are solved numerically usingANSYS-Fluent program package which is based on the Finite Volume Method. The Volume of Fluid (VOF) method is used to determine the free surface profile. Grid independence study is carried out using a Grid Convergence Index (GCI) analysis. The numerical results for the free surface and velocity profiles of flow from the present turbulence models are compared with experimental data. Mean square errors and mean absolute relative errors of measured and predicted free surface profiles and velocity fields indicate that Reynolds Stress Model is more successful turbulence closure model than the other two for the determination of surface profile and velocity field of the B-type hydraulic jump

___

  • Tokyay, N. D., Altan-Sakarya, A. B. and Eski, E., Numerical simulation of minimum B-jumps at abrupt drops. International Journal for Numerical Methods in Fluids, 56(9), 1605-1623, 2008.
  • Tokyay, N. D. and Ulubayram, H., Eşiklerde hidrolik sıçrama. IMO Teknik Dergi, 1990(1), 9-23, 1990.
  • Del Giudice, G., Gisonni, C. and Rasulo, G., Design of a Scroll Vortex Inlet for Supercritical Approach Flow. Journal of Hydraulic Engineering, 136(10), 837-841, 2010.
  • Ram, K. V. S. and Prasad, R., Spatial B-jump at sudden channel enlargements with abrupt drop. Journal of Hydraulic Engineering-ASCE, 124(6), 643-646, 1998.
  • Kawagoshi, N. and Hager, W. H., B-Jump in Sloping Channel, II.. Journal of Hydraulic Research, 28(4), 461-480, 1990.
  • Gümüş, V., Şimşek, O., Soydan, N. G., Aköz, M. S. and Kırkgöz, M. S., Tambur Kapak Mansabında Oluşan Batmış Hidrolik Sıçramanın Sayısal Analizi. International Construction Congress 2012, Isparta, 2012.
  • Gümüş, V., Aköz, M.S, Şimşek, O., Soydan, N. G. and Kırkgöz, M.S., Experimental and Numerical Modeling of Free Hydraulic Jump Downstream of a Gate. 10th International Congress on Advances in Civil Engineering, Ankara, 2012.
  • Kırkgöz, M. S., Aköz, M. S. and Öner, A. A., Numerical modeling of flow over a chute spillway. Journal of Hydraulic Research, 47(6),790-797, 2009.
  • Öner, A. A., Aköz, M. S., Kırkgöz, M. S. and Gümüş, V., Experimental Validation of Volume of Fluid Method for a Sluice Gate Flow. Advances in Mechanical Engineering, 2012, 10, 2012.
  • Oertel, M. and Bung, D. B., Initial stage of two-dimensional dam-break waves: laboratory versus VOF. Journal of Hydraulic Research, 50(1), 89-97, 2012.
  • Launder B. E. and Spalding D., Lectures in Mathematical Models of Turbulence, London. Academic Press, 1972.
  • Menter, F. R., 2-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32(8), 1598-1605, 1994.
  • Launder, B. E., Reece, G. J. and Rodi, W., Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537-566, 1975.
  • Wilcox, D.C., Turbulence Modeling for CFD, California. DCW Industries, Inc., 2000.
  • Hirt, C. W. and Nichols, B. D., Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 39(1), 201-225, 1981.
  • Ansys Inc., Release 14.0. www.ansys.com, 2012.
  • Roache, P. J., Verification of codes and calculations. AIAA Journal, 36(5), 696 -702, 1998.
  • Kırkgöz, M.S. and Ardıçlıoğlu, M., Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering, 123(12), 1099-1105, 1997.
  • Chen, H.C. and Patel, V.C., Near-wall turbulence models for complex flows including separation. AIAA journal, 26(6), 641-648, 1988.
  • Versteeg, H.K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics: the finite volume method, England. Pearson Education, 2007.
  • Gümüş, V., Aköz, M. S., and Kırkgöz, M. S., Kapak Mansabında Batmış Hidrolik Sıçramanın Deneysel ve Sayısal Modellenmesi. İMO Teknik Dergi ,24 (2), 6379- 6397, 2013.