Enine Donatısız Betonarme Kiriş Kesme Mukavemeti Bağıntılarının Güvenilirliğinin İrdelenmesi

Yönetmelikler, betonarme elemanların yük taşıma kapasitelerine ani ve gevrek olan kesme kırılması ile ulaşmasını engellemek için kesme kırılması oluşması olasılığını azaltmıştır. Günümüze kadar yapılan çalışmalarda, enine donatısız betonarme kirişlerin eğik çatlama kesme mukavemetlerinin tahmini için çok sayıda bağıntı önerilmiştir. Bu çalışmada, farklı geometri ve malzeme özelliklerine sahip kiriş toplumu gözönüne alınarak dört farklı yönetmelik ve yedi farklı araştırmada önerilen bağıntılara ilişkin performans fonksiyonları oluşturulmuştur. Bu performans fonksiyonları esas alınarak enine donatısız betonarme kiriş kesme mukavemeti bağıntılarının güvenilirliği ikinci-moment yaklaşımı kullanılarak değerlendirilmiştir. Değerlendirme sonucu, farklı dağılımlar için belirlenen göçme olasılıklarına göre güvenilirliği en yüksek olan bağıntının EN92 olduğu görülmüştür

-

Reliability Assessment of Existing Equations Predicting the Shear Strength of Reinforced Concrete Beams without Stirrups Codes keep the probability of shear failure low in order to prevent a reinforced concrete member from reaching its ultimate strength through shear failure, which is sudden and brittle. Numerous equations for predicting the cracking shear strength of a reinforced concrete beam without stirrups have been proposed in the previous studies. In this study, performance functions related to the equations given by four codes and seven researches are developed considering beams with various geometrical and material properties. The reliability of these equations is assessed based on the performance functions by using second-moment approach. According to the failure probabilities based on different distributions, it is observed that the equation given by EN92 is the most reliable one

___

  • Gündüz, A., Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik, Birinci Baskı, Küre Basım Yayım, İstanbul, 1996.
  • Ang, A. H-S., Tang, W. H., Probability concepts in engineering planning and design, V.II, Decision, risk, and reliability, Wiley, New York, 1984.
  • Ranganathan, Reliability offices, New Delhi, 1990. analysis and design of structures, tata McGraw-Hill
  • Nowak, A.S., Collins, K.R., Reliability of structures, The McGraw-Hill Companies, 2000.
  • Taylor, R., Some Shear Tests On Reinforced Concrete Beams Without Shear Reinforcement, Mag Conc Res, 12(36): 145-154, 1960.
  • Krefeld, W.J., Thurston, C. W., Studies of the shear and Diagonal Tension Strength of Simply Supported Reinforced Concrete Beams, ACI Journal, 63(4): 451-476, 19 Shah, A., Ahmad, S., An Experimental Investigation into Shear Capacity of High Strength Concrete, Asian Journal of Civil Engineering (Building and Housing), 8(15): 549-562, 2007.
  • Moody, K.G., Viest, I. M., Elstner, R. C., Hognestad, E., Shear strength of reinforced concrete beams, part I-tests of simple beams, ACI J Proceed, 51(3): 317-332, 1954.
  • Mattock, A. H., Diagonal tension cracking in concrete beams with axial forces, Proceed ASCE, 95(ST9): 1887-1900, 1969.
  • Diaz de Cossio, R., Siess, C. P., Behavior and strength in shear of beams and frames without web reinforcement, ACI J Proceed, 56(8): 695-735, 1960.
  • Van den Berg, F. J., Shear strength of reinforced concrete beams without web reinforcement. Part2-Factors affecting load at diagonal cracking, ACI J Proceed, 59(11): 1587-1600, 1962.
  • Ahmad, S. H., Khaloo, A. R., Poveda, A., Shear capacity of reinforced high-strength concrete beams, ACI J 83(2): 297-305, 1986.
  • Sneed, L. H., Ramirez, J. A., Influence of effective depth on shear strength of concrete beams-Experimental study, ACI Struct J, 107(5), 554-562, 2010.
  • ACI Committee 318, Building Code Requirements For Structural Concrete (ACI 318M-08) and Commentary, ACI, Farmington Hills, 2008.
  • TS 500, Betonarme Yapıların Hesap ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara, 2000.
  • Eurocode 2: Design of Concrete Structures, Part 1-1, General Rules and Rules For Buildings, CEN, Brussels, EN 1992-1-1:2004.
  • Comité Euro-International du Béton (CEB): CEB-FIP Model Code,; Bulletin d’Information, Thomas Telford Services, London, 213-214, 1990.
  • Zsutty, T. C., Shear Strength Prediction For Separate Categories of Simple Beam Tests, ACI J Proceed, 68(2): 138-143, 1971.
  • Okamura, H., Higai, T., Proposed Design Equation For Shear Strength of RC Beams Without Web Reinforcement, Proc Japan Soc Civil Eng, 300:131–141, 1980.
  • Bazant, Z. P., Kim, J. K., Size Effect In Shear Failure Of Longitudinally Reinforced Beams, ACI Struct J, 81(5): 456-468, 1984.
  • Kim, J. K., Park, Y. D., Prediction of shear strength of reinforced concrete beams without web reinforcement, ACI Mater J, 93(3): 213-222, 1996.
  • Collins, M.P., Kuchma, D.A., How Safe Are Our Large, Lightly Reinforced Concrete Beams, Slabs and Footings, ACI Struct J, 96(4): 482–490, 1999.
  • Rebeiz, K. S., Shear Strength Prediction For Concrete Member, J Struct Eng ASCE, 125(3): 301-308, 1999
  • Khuntia, M., Stojadinovic, B., Shear Strength Of Reinforced Concrete Beams Without Transverse Reinforcement, ACI Struct J. ,98(5):648–656, 2001.
  • TS 500, Betonarme Yapıların Hesap ve Yapım Kuralları, 1984.
  • Ersoy, U., Özcebe, G., Betonarme, Evrim Yayınevi, İstanbul, 2001.
  • Hosseinnezhad, A., Pourzeynali, S., Razzaghi, J., Aplication of First- Order Second- Moment Level 2 Reliability Analysis of Presstressed Concrete Bridges, 7th International Congress On Civil Engineering, 2000.
  • Enright, M. P., Frangopol, D.M., Probabilistic Analysis of Resistance Degradation of Reinforced Concrete Bridge Beams Under Corrosion, Engineering Structures , 20: 960-971, 1998.
  • Neves, R. A., Chateauneuf, A.M., Venturini W.S., Component and System Reliability Analysis Of Nonlinear Reinforced Concrete Grids With Multiple Failure Modes, Structural Safety, 30: 183-189, 2008.
  • He, Z., Qiu, F., Probabilistic Assesment On Flexural Capasity of GFRP- Reinforced Concrete Beams Designed By Guideline, Construction and Building Materials, 25: 1663-1670, 2011.
  • Soares, R.C., Mohammed, A., Venturini, W.S., Lemaire, M., Reliability Analysis of Nonlinear Reinforced Concrete Frames Using The Response Surface Method, Reliability Engineering and System Safety, 75: 1-16, 2002.
  • Biandini, F., Bantempi, F., Frangopol, D.M., Malerba, P.G., Reliability of Material and Geometrically Non-linear Reinforced and Prestressed Concrete Structure, Computers and Structure, 82: 1021-1031, 2004.
  • İbiş A., Literatürde önerilen enine donatısız betonarme kiriş çatlama kesme mukavemeti bağıntılarının güvenilirliğinin olasılıksal yöntemlerle irdelenmesi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, 2011. Ekler: