Deprem Bölgesinde Bulunan Mevcut Bir Tank Yapısının Geoteknik Değerlendirmesi

Bu çalışma TBDY 2018, uluslararası standartları ve literatürdeki çalışmaları esas alarak deprem bölgesinde bulunan mevcut bir tank yapısının deprem yükleri altında geoteknik değerlendirmesini sunmaktadır. Sahada sıvılaşma potansiyeli bulunması ve kayma mukavemeti düşük 35 m'den kalın kil tabakalarının mevcut olması sebebiyle zaman tanım alanında doğrusal olmayan boşluk suyu basıncı modelleri kullanılarak ve kullanılmadan sahaya özel zemin davranış analizleri ayrı ayrı gerçekleştirilmiştir. Zemin yumuşaması ve sıvılaşmasının doğal bir izolatör gibi davranarak yüzey ivmelerini ciddi oranda sönümlediği gözlemlenmiş, ancak serbest sahada yüksek mertebelerde yanal yer değiştirmelere (2.0-2.3 m) ve düşey oturmalara (58-128 cm) sebebiyet verdiği tahmin edilmiştir. Tank yapısı temelinde oluşacak farklı oturmanın yaklaşık en fazla 70-80 cm, en düşük ise 5-10 cm mertebelerinde olduğu tahmin edilmekte ve boru bağlantılarında bu yer değiştirme farkının göz önünde bulundurulması önerilmektedir. Üst yapıdan gelecek olan atalet (ilave deprem) yükleri altında tank yapısı tabanında ve geogritli dolgu altında taşıma gücü ve tabanda kayma kontrolleri yapılmış ve güvenli bulunmuştur.

Geotechnical Evaluation of an Existing Tank Structure Located in a Seismic Zone

This study presents the geotechnical evaluation of an existing tank structure under earthquake loads, based on TBDY 2018, international standards, and the published models in the literature. Due to the presence of liquefaction potential and clay layers thicker than 35 m with low shear strength in the field, non-linear site-specific analyses were performed in the time domain with and without pore pressure models. Soil softening and liquefaction act as a natural isolator, damping surface accelerations significantly, but they have caused high lateral displacements (2.0-2.3 m) and vertical settlements (58-128 cm) in the free field. It is estimated that the differential settlement at the tank structure is approximately 70-80 cm at the maximum and 5-10 cm at the lowest that is needed to be considered in pipe connections with the tank at the site. Under the additional earthquake loads from the superstructure, the bearing capacity and sliding control on the bottom of the tank structure and under the fill reinforced with geogrid were found to be safe.

___

  • API Standard 650, Welded Steel Tanks for Oil Storage, 12th Edition, American Petroleum Institute, Washington DC, USA, 2013.
  • ASCE/SEI 7-10, Minimum design loads for buildings and other structures, Reston, VA: ASCE, 2013.
  • EN 1991-4, Eurocode 1: Actions on structures - Part 4: Silos and tanks, European Committee for Standardization, 2006.
  • New Zealand Society of Earthquake Engineeing (NZSEE), Seismic Design of Storage Tanks: 2009, Recommendations of a NZSEE Study Group on Seismic Design of Storage Tanks, Wellington, New Zealand, 2009.
  • Duncan, J. M., and D'Orazio, T. B., Stability of steel oil storage tanks. Journal of Geotechnical Engineering, 110(9), 1219-1238, 1984
  • D'Orazio, T. B., and Duncan, J. M., Differential settlements in steel tanks. Journal of Geotechnical Engineering, 113(9), 967-983, 1987.
  • Kumbasar V., Silindirik Tankların Temel Hesapları, 641, İTÜ Kütüphanesi, 1966.
  • Düzceer, R., Akaryakıt tank temellerinin hesaplanan ve ölçülen oturmaları, Zemin Mekaniği ve Temel Mühendisliği 1. Özel Konulu Sempozyumu, İstanbul, Türkiye, 2007.
  • Ramdane, B., Omar, S., and Djahid, A., Differential Settlements of Cylindrical Steel Storage Tanks: Case of the Marine Terminal of Bejaia, Seventh International Conference on Case Histories in Geotechnical Engineering, Chicago, USA, 2013.
  • Kamyab, H., and Palmer, S. C., Displacements in oil storage tanks caused by localized differential settlement. Journal of Pressure Vessel Technology, 113, 71-80, 1991.
  • Sento, N., Yasuda, S., Yoshida, N., and Harada, K., Case Studıes for Oil Tank on Liquefiable Sandy Ground Subjected to Extremely Large Earthquakes and Countermeasure Effects by Compaction, 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
  • Cubrinovski, M., Ishihara, K., and Kijima, T., Effects of Liquefaction on Seismis Response of a Storage Tank on Pile Foundations. Proceedings: Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor W.D. Liam Finn, Paper No 6.15, California, 2001.
  • TBDY, Türkiye Bina Deprem Yönetmeliği, AFAD, Türkiye, 2018.
  • Stroud, M. A., The Standard Penetration Test in Insensitive Clays and Soft Rocks. Proceedings of the European Symposium on Penetration Testing, 2(2): 367-375, Stockholm, 1974.
  • Baguelin, F., The pressuremeter and foundation engineering. Series on Rock and Soil Mechanics, 2(4), 617, 1978.
  • Hatanaka, M., and Uchida, A., Emprical Correlation between Penetration Resistance and Internal Friction Angle of Sandy Soils. Soils and Foundations, Vol. 36, No.4, pp. 1-10, 1996.
  • Kulhawy, F.H., and Mayne, P.W., Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute, Palo Alto, California, 1990.
  • Briaud J.L., ,The Pressuremete, A.A. Balkema, Rotterdam, Netherlands, 1992.
  • Akkar, S., Azak Eroğlu, T., Çan, T., Çeken, U., Demircioğlu M.B., Duman, T., Ergintav, S., Kadirioğlu, F.T., Kalafat, D., Kale, Ö., Kartal R.F., Kılıç, T., Özalp, S., Şeşetyan, K., Tekin, S., Yakıt, A., Yılmaz, M.T., ve Zülfikar, Ö., Türkiye Sismik Tehlike Haritasının Güncellenmesi. AFAD, Proje No: UDAP-Ç-13-06, 2014.
  • Youd, T. L., and Idriss, I. M., Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4), 297-313, 2001.
  • Dikmen, Ü., Başokur. A.T., Akkaya, İ., ve Arısoy, M.Ö., Yüzey dalgalarının çok-kanallı analiz yönteminde uygun atış mesafesinin seçimi. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Dergisi, 31(1), 23-32, 2009.
  • Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Ilhan, O., Groholski, D.R., Phillips, C.A., and Park, D., DEEPSOIL 7.0, User Manual. 2017.
  • Skempton, A. W., Discussion: Sensitivity of clays and the c/p ratio in normally consolidated clays. Proceedings of the American Society of Civil Engineers, Separate, 478, 19-22, 1954.
  • Darendeli, M.B., Development of a new family of normalized modulus reduction and material damping curves. Ph.D. Dissertation, The University of Texas at Austin, 2001.
  • Pacific Earthquake Engineering Research (PEER) Center, PEER Strong Motion Database, http://peer.berkeley.edu/smcat/, 2006.
  • SeismoMatch 2020. A computer program for spectrum matching of earthquake records, https://seismosoft.com, 2020
  • Tokimatsu, K., and Seed, H. B., Simplified procedures of the evaluation of settlements in clean sands. Rep. No. UCB/GT-84/16, University of California, USA, 1984.
  • Tokimatsu, K., and Seed, H. B., Evaluation of settlements in sands due to earthquake shaking. Journal of Geotechnical Engineering, 113(8), 861-878, 1987.
  • Ishihara, K., and Yoshimine, M., Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and foundations, 32(1), 173-188, 1992.
  • Shamoto, Y., Zhang, J. M., and Tokimatsu, K., New charts for predicting large residual post-liquefaction ground deformation. Soil dynamics and earthquake engineering, 17(7-8), 427-438, 1998.
  • Youd, T. L., Hansen, C. M., and Bartlett, S. F., Revised multilinear regression equations for prediction of lateral spread displacement. Journal of Geotechnical and Geoenvironmental Engineering, 128(12), 1007-1017, 2002.
  • Wu, J., Seed, R. B., and Pestana, J. M., Liquefaction triggering and post liquefaction deformations of Monterey 0/30 sand under unidirectional cyclic simple shear loading. Geotechnical Engineering Research Rep. No. UCB/GE-2003/01, University of California, USA, 2003.
  • Zhang, G., Robertson, P. K., and Brachman, R. W. I., Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 861-871, 2004.
  • Cetin, K. O., Bilge, H. T., Wu, J., Kammerer, A. M., and Seed, R. B., Probabilistic model for the assessment of cyclically induced reconsolidation (volumetric) settlements. Journal of Geotechnical and Geoenvironmental Engineering, 135(3), 387-398, 2009.
  • Yasuhara, K., Konami, T., Hyodo, and Hirao, K., M., Earthquake-Induced Settlement in Soft Grounds, Second International Conference on Recent Advances in Geotechnical Earthquake Engineering Soil Dynamics, Missouri, 1991.
  • Erken, A., Özay, R., Kaya, Z., ve Ülker, M.B.C, Elibol, B., Depremler Sırasında Zeminlerin Sıvılaşması ve Taşıma Gücü Kayıpları, Türkiye Mühendislik Haberleri, 431(3), 2004.
  • Unutmaz, B., and Cetin, K. O., Post-cyclic settlement and tilting potential of mat foundations. Soil Dynamics and Earthquake Engineering, 43, 271-286, 2012.
  • Bilge, H. T., and Cetin, K. O., Probabilistic assessment of cyclic soil straining in fine-grained soils. Geotechnical Earthquake Engineering and Soil Dynamics IV, (pp. 1-10), 2008.
  • Chiaradonna, A., Bilotta, E., d’Onofrio, A.,. Flora, A. and Silvestri, F., A Simplified Procedure for Evaluating Post-Seismic Settlements in Liquefiable Soils. Geotechnical Earthquake Engineering and Soil Dynamics V, Austin, Texas, 2018.
  • Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil. Journal of Geotechnical and Geoenvironmental Engineering, 136(1), 151–164, 2010a.
  • Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., Centrifuge Testing to Evaluate and Mitigate Liquefaction-Induced Building Settlement Mechanisms. Journal of Geotechnical and Geoenvironmental Engineering, 136(7), 918–929, 2010b.
  • Lu, C.W., A Simplified Calculation Method for Liquefaction-Induced Settlement of Shallow Foundation. Journal of Earthquake Engineering, 21:8, 1385-1405, 2017.
  • Bray, J.D., Macedo, J., 6th Ishihara lecture: Simplified procedure for estimating liquefaction-induced building settlement. Soil Dynamics and Earthquake Engineering, 102, 215-231, 2017.
  • Fine. GEO5 2020-Spread Footing. http://www.finesoftware.eu/, Prague, Czech Rebuplic, 2020.
  • Day, R.W., Geotechnical Earthquake Engineering Handbook: With the 2012 International Building Code. McGraw-Hill Education, 2012.