Betonarme Kolonların Hasar Sınır Eğriliklerinin Belirlenmesi

Son yıllarda, özellikle mevcut yapıların değerlendirilmesinde, kuvvete dayalı tasarım yöntemleri yerine şekil değiştirme esaslı tasarım yöntemleri giderek yaygın bir biçimde kullanılmaya başlanmıştır. Şekil değiştirme esaslı tasarım yöntemleri; malzemenin elastik ötesi davranışını hesaba katmaya olanak verdiklerinden kuvvete dayalı tasarım yöntemleriyle karşılaştırıldığında, yer hareketi etkisiyle ortaya çıkması muhtemel yapısal hasarın tahmini de daha gerçekçi olur. Şekil değiştirme esaslı tasarım için yapısal elemanlarda oluşan şekil değiştirme taleplerini belirli bir hasar seviyesine ulaşma olasılığıyla ilişkilendirmek gerekmektedir. Bu noktadan hareketle, Türk Deprem Yönetmeliğinde, sünek taşıyıcı sistem elemanlarının kritik kesitlerinde oluşması muhtemel hasarı tarif eden üç farklı hasar sınırı ve bunların sınırladığı hasar bölgeleri tanımlanmıştır: Minimum Hasar Sınırı (MN), Güvenlik Sınırı (GV) ve Göçme Sınırı (GÇ). Söz konusu hasar sınırlarının nicel ifadesi olarak da taşıyıcı sistem elemanlarında oluşmasına izin verilen en büyük beton ve donatı çeliği birim şekil değiştirme sınırları verilmiştir

-

Keywords:

-,

___

  • SEAOC., Vision 2000: Performance Based Seismic Engineering of Buildings. Structural Engineers Association of California, Sacramento CA., 1995.
  • Applied Technology Council, Seismic evaluation and retrofit of concrete buildings ATC-40, California, 1996.
  • Federal Emergency Management Agency, Prestandard and commentary for the
  • seismic rehabilitation of buildings,Washington (DC): FEMA-356, 2000.
  • Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara, Mart 2007.
  • Park, R., and Paulay, T., Reinforced Concrete Structures, John Wiley and Sons, New York, 1975, 769 pp.
  • Priestley M.J.N., and Kowalsky M.J., Aspects of drift and ductility capacity of rectangular cantilever structural walls, Bulletin of the New Zealand National Society for Earthquake Engineering, Silverstream, New Zealand, 31(6), 1998, pp. 73–85.
  • Kowalsky M.J., Deformation Limit States for Circular Reinforced Concrete Bridge Columns, Journal of Structural Engineering, ASCE, Vol. 126 No.8, August, 2000, pp. 869-878.
  • Berry M.P., and Eberhard M.O., Performance Models for Flexural Damage in Reinforced Concrete Columns., Pacific Earthquake Engineering Research Center Report 2003, Univ. of California, Berkeley.
  • Bae S., and Bayrak O., Seismic Performance of Full-Scale Reinforced Concrete, ACI Structural Journal, Vol. 105 No.2, March-April, 2008, pp. 123-133.
  • Mander, J.B., Priestley, M.J.N., and Park, R., Theoretical Stress-Strain Model for Confined Concrete, ASCE Structural Journal, Vol. 114, No. 8, 1988, pp. 1804-1826.
  • Lehman, D.E., and Moehle, J.P., Seismic Performance of Well-Confined Concrete Bridge Columns., Pacific Earthquake Engineering Research Center Report 1998/01, University of California, Berkeley, December 2000.
  • StatSoft Inc. STATISTICA V.6.0 for Windows. Tulsa, OK, USA;1995.
  • Soesianawati, M.T., Park, R., and Priestley, M.J.N., Limited Ductility Design of Reinforced Concrete Columns, Report 86-10, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, March 1986.
  • Tanaka H., and Park R., Effect of lateral confining reinforcement on the ductile behavior of reinforced concrete columns. Report 90-2, Department of Civil Engineering, University of Canterbury, June 1990, 458 pages.
  • Ang Beng G., Priestley, M.J.N., and Park, R., Ductility of Reinforced Bridge Piers Under Seismic Loading, Report 81-3, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, February 1981, 109 pages.
  • Zahn FA, Park R, and Priestley MJN., Design of reinforced bridge columns for strength and ductility, Report 86-7, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, March 1986, 330 pages.
  • Watson, S., and Park, R., Design of Reinforced Concrete Frames of Limited Ductility, Report 89-4, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, January 1989, 232 pages.
  • Nosho, K., Stanton, J., and MacRae, G., Retrofit of Rectangular Reinforced Concrete Columns using Tonen Forca Tow Sheet Carbon Fiber Wrapping, Report No. SGEM 96-2, Department of Civil Engineering, University of Washington, Seattle, Washington.
  • Kowalsky, M.J., Priestley, M.J.N., and Seible, F., Shear and Flexural Behavior of Lightweight Concrete Bridge Columns in Seismic Regions, American Concrete Institute, ACI Structural Journal, Vol. 96, No. 1, January-February 1999, pp. 136-148.
  • Cheok, G.S., and Stone, W. C. Behavior of 1/6-Scale Model Bridge Columns Subjected to Cycle Inelastic Loading. NBSIR 86-3494, U.S. National Institute of Standards and Technology, 1986, Gaithersburg, Maryland.
  • Hose, Y.D., Seible, F. and Priestley, M.J.N., Strategic Relocation of Plastic Hinges in Bridge Columns, Structural Systems Research Project, 97/05, University of California, San Diego, La Jolla, September 1997.
  • Berry, M., Parish, M., and Eberhard, M., PEER Structural Performance Database User’s Manual, PEER Research Report, University of California-Berkeley, Berkeley, CA, 2004, http://nisee.berkeley.edu/spd.
  • Priestley MJN., Performance-based seismic design, Proceedings of the 12th WCEE, Auckland, 2000, Paper No. 2831.